寧夏中衛(wèi)市一中2023-2024學年數(shù)學高一下期末聯(lián)考模擬試題含解析_第1頁
寧夏中衛(wèi)市一中2023-2024學年數(shù)學高一下期末聯(lián)考模擬試題含解析_第2頁
寧夏中衛(wèi)市一中2023-2024學年數(shù)學高一下期末聯(lián)考模擬試題含解析_第3頁
寧夏中衛(wèi)市一中2023-2024學年數(shù)學高一下期末聯(lián)考模擬試題含解析_第4頁
寧夏中衛(wèi)市一中2023-2024學年數(shù)學高一下期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

寧夏中衛(wèi)市一中2023-2024學年數(shù)學高一下期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,則()A. B. C. D.2.如圖,兩點為山腳下兩處水平地面上的觀測點,在兩處觀察點觀察山頂點的仰角分別為,若,,且觀察點之間的距離比山的高度多100米,則山的高度為()A.100米 B.110米 C.120米 D.130米3.在下列各圖中,每個圖的兩個變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)4.秦九韶是我國南宋時期的數(shù)學家,在他所著的《數(shù)書九章》中提出的多項式求值的“秦九韶算法”,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法,求某多項式值的一個實例,若輸入的值分別為4和2,則輸出的值為()A.32 B.64 C.65 D.1305.已知向量,且,則().A. B.C. D.6.已知銳角△ABC的面積為,BC=4,CA=3,則角C的大小為()A.75° B.60° C.45° D.30°7.已知等差數(shù)列的公差,前項和為,則對正整數(shù),下列四個結(jié)論中:(1)成等差數(shù)列,也可能成等比數(shù)列;(2)成等差數(shù)列,但不可能成等比數(shù)列;(3)可能成等比數(shù)列,但不可能成等差數(shù)列;(4)不可能成等比數(shù)列,也不叫能成等差數(shù)列.正確的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)8.一只小狗在圖所示的方磚上走來走去,最終停在涂色方磚的概率為()A. B. C. D.9.將函數(shù)的圖象向左平移個長度單位后,所得到的圖象關(guān)于軸對稱,則的最小值是()A. B. C. D.10.如圖所示的陰影部分是由軸及曲線圍成,在矩形區(qū)域內(nèi)隨機取一點,則該點取自陰影部分的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中角所對的邊分別為,若則___________12.若向量,,且,則實數(shù)______.13.已知函數(shù)fx=cosx+2cosx,14.如圖中,,,,M為AB邊上的動點,,D為垂足,則的最小值為______;15.如果奇函數(shù)f(x)在[3,7]上是增函數(shù)且最小值是5,那么f(x)在[-7,-3]上是_________.①減函數(shù)且最小值是-5;②減函數(shù)且最大值是-5;③增函數(shù)且最小值是-5;④增函數(shù)且最大值是-516.若角的終邊經(jīng)過點,則的值為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C的對邊分別為a,b,c,且,,求△ABC的面積的最大值.18.如圖,已知四棱錐的側(cè)棱底面,且底面是直角梯形,,,,,,點在棱上,且.(1)證明:平面;(2)求三棱錐的體積.19.如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點.(1)證明:;(2)若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值.20.某建筑公司用8000萬元購得一塊空地,計劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計得知,如果將樓房建為x(x≥12)層,則每平方米的平均建筑費用為Q(x)=3000+50x(單位:元).(1)求樓房每平方米的平均綜合費用f(x)的解析式.(2)為了使樓房每平方米的平均綜合費用最少,該樓房應建為多少層?每平方米的平均綜合費用最小值是多少?(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)21.已知,函數(shù),,(1)證明:是奇函數(shù);(2)如果方程只有一個實數(shù)解,求a的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)不等式的性質(zhì),一一分析選擇正誤即可.【詳解】根據(jù)不等式的性質(zhì),當時,對于A,若,則,故A錯誤;對于B,若,則,故B錯誤;對于C,若,則,故C錯誤;對于D,當時,總有成立,故D正確;故選:D.【點睛】本題考查不等式的基本性質(zhì),屬于基礎(chǔ)題.2、A【解析】

設(shè)山的高度為,求出AB=2x,根據(jù),求出山的高度.【詳解】設(shè)山的高度為,如圖,由,有.在中,,有,又由觀察點之間的距離比山的高度多100,有.故山的高度為100.故選A【點睛】本題主要考查解三角形的實際應用,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.3、D【解析】

仔細觀察圖象,尋找散點圖間的相互關(guān)系,主要觀察這些散點是否圍繞一條曲線附近排列著,由此能夠得到正確答案.【詳解】散點圖(1)中,所有的散點都在曲線上,所以(1)具有函數(shù)關(guān)系;

散點圖(2)中,所有的散點都分布在一條直線的附近,所以(2)具有相關(guān)關(guān)系;

散點圖(3)中,所有的散點都分布在一條曲線的附近,所以(3)具有相關(guān)關(guān)系,

散點圖(4)中,所有的散點雜亂無章,沒有分布在一條曲線的附近,所以(4)沒有相關(guān)關(guān)系.

故選D.【點睛】本題考查散點圖和相關(guān)關(guān)系,是基礎(chǔ)題.4、C【解析】程序運行循環(huán)時變量值為:;;;,退出循環(huán),輸出,故選C.5、D【解析】

運用平面向量的加法的幾何意義,結(jié)合等式,把其中的向量都轉(zhuǎn)化為以為起點的向量的形式,即可求出的表示.【詳解】,,故本題選D.【點睛】本題考查了平面向量加法的幾何意義,屬于基礎(chǔ)題.6、B【解析】試題分析:由三角形的面積公式,得,即,解得,又因為三角形為銳角三角形,所以.考點:三角形的面積公式.7、D【解析】試題分析:根據(jù)等差數(shù)列的性質(zhì),,,,因此(1)錯誤,(2)正確,由上顯然有,,,,故(3)錯誤,(4)正確.即填(2)(4).考點:等差數(shù)列的前項和,等差數(shù)列與等比數(shù)列的定義.8、C【解析】

方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可計算出所求事件的概率.【詳解】由圖形可知,方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可知,小狗最終停在涂色方磚的概率為,故選:C.【點睛】本題考查利用幾何概型概率公式計算事件的概率,解題時要理解事件的基本類型,正確選擇古典概型和幾何概型概率公式進行計算,考查計算能力,屬于基礎(chǔ)題.9、B【解析】

試題分析:由題意得,,令,可得函數(shù)的圖象對稱軸方程為,取是軸右側(cè)且距離軸最近的對稱軸,因為將函數(shù)的圖象向左平移個長度單位后得到的圖象關(guān)于軸對稱,的最小值為,故選B.考點:兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質(zhì).【方法點晴】本題主要考查了兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質(zhì),將三角函數(shù)圖象向左平移個單位,所得圖象關(guān)于軸對稱,求的最小值,著重考查了三角函數(shù)的化簡、三角函數(shù)圖象的對稱性等知識的靈活應用,本題的解答中利用輔助角公式,化簡得到函數(shù),可取出函數(shù)的對稱軸,確定距離最近的點,即可得到結(jié)論.10、A【解析】,所以,故選A。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】,;由正弦定理,得,解得.考點:正弦定理.12、【解析】

根據(jù),兩個向量平行的條件是建立等式,解之即可.【詳解】解:因為,,且所以解得故答案為:【點睛】本題主要考查兩個向量坐標形式的平行的充要條件,屬于基礎(chǔ)題.13、(0,1)【解析】

畫出函數(shù)f(x)在x∈0,2【詳解】解:畫出函數(shù)y=cosx+2|cosx|=3cos以及直線y=k的圖象,如圖所示;由f(x)的圖象與直線y=k有且僅有四個不同的交點,可得0<k<1.故答案為:(0,1).【點睛】本題主要考查利用分段函數(shù)及三角函數(shù)的性質(zhì)求參數(shù),數(shù)形結(jié)合是解題的關(guān)鍵.14、【解析】

以為坐標原點建立平面直角坐標系,用坐標表示出的值,然后利用換元法求解出對應的最小值即可.【詳解】如圖所示,設(shè),所以,根據(jù)條件可知:,所以,設(shè),,,所以,所以,所以,所以當時,有最小值,最小值為.故答案為:.【點睛】本題考查利用坐標法以及換元法求解最值,著重考查邏輯推理和運算求解的能力,屬于較難題(1)利用換元法求解最值時注意,換元后新元的取值范圍;(2)三角函數(shù)中的一組“萬能公式”:,.15、④【解析】

由題意結(jié)合奇函數(shù)的對稱性和所給函數(shù)的性質(zhì)即可求得最終結(jié)果.【詳解】奇函數(shù)的函數(shù)圖象關(guān)于坐標原點中心對稱,則若奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù)且最小值為1,那么f(x)在區(qū)間[﹣7,﹣3]上是增函數(shù)且最大值為﹣1.故答案為:④.【點睛】本題考查了奇函數(shù)的性質(zhì),函數(shù)的對稱性及其應用等,重點考查學生對基礎(chǔ)概念的理解和計算能力,屬于中等題.16、.【解析】

根據(jù)三角函數(shù)的定義求出的值,然后利用反三角函數(shù)的定義得出的值.【詳解】由三角函數(shù)的定義可得,,故答案為.【點睛】本題考查三角函數(shù)的定義以及反三角函數(shù)的定義,解本題的關(guān)鍵就是利用三角函數(shù)的定義求出的值,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】

(1)利用二倍角公式、輔助角公式進行化簡,,然后根據(jù)單調(diào)區(qū)間對應的的公式求解單調(diào)區(qū)間;(2)根據(jù)計算出的值,再利用余弦定理計算出的最大值則可求面積的最大值,注意不等式取等號條件.【詳解】解:(1)∴函數(shù)的單調(diào)遞增區(qū)間為,(2)由(1)知得(舍)或∴有余弦定理得即∴當且僅當時取等號∴【點睛】(1)輔助角公式:;(2)三角形中,已知一邊及其對應角時,若要求解面積最大值,在未給定三角形形狀時,可選用余弦定理求解更方便,若是給定三角形形狀,這時選用正弦定理并需要對角的范圍作出判斷.18、(1)見證明;(2)4【解析】

(1)取的三等分點,使,證四邊形為平行四邊形,運用線面平行判定定理證明.(2)三棱錐的體積可以用求出結(jié)果.【詳解】(1)證明:取的三等分點,使,連接,.因為,,所以,.因為,,所以,,所以四邊形為平行四邊形,所以,因為平面,平面,所以平面.(2)解:因為,,所以的面積為,因為底面,所以三棱錐的高為,所以三棱錐的體積為.因為,所以三棱錐的高為,所以三棱錐的體積為,故三棱錐的體積為.【點睛】本題考查了線面平行的判定定理、三棱錐體積的計算,在證明線面平行時需要構(gòu)造平行四邊形來證明,三棱錐的體積計算可以選用割、補等方法.19、(1)見解析;(2)【解析】

(1)證明,利用平面即可證得,問題得證.(2)過點作于點,過點作于點,連接.當與垂直時,與平面所成最大角,利用該最大角的正切值為即可求得,證明就是二面角的一個平面角,解即可.【詳解】(1)因為底面為菱形,所以為等邊三角形,又為中點所以,又所以因為平面,平面所以,又所以平面(2)過點作于點,過點作于點,連接當與垂直時,與平面所成最大角.由(1)得,此時.所以就是與平面所成的角.在中,由題意可得:,又所以.設(shè),在中由等面積法得:解得:,所以因為平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一個平面角因為為的中點,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值為【點睛】本題主要考查了線面垂直的證明,考查了轉(zhuǎn)化能力,還考查了線面角知識,考查了二面角的平面角作法,考查空間思維能力及解三角形,考查了方程思想及計算能力,屬于難題.20、(1);(2)該樓房應建為20層,每平方米的平均綜合費用最小值為5000元.【解析】【試題分析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論