版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年四川省廣安市鄰水縣鄰水實驗學(xué)校高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,則的最小值為A. B. C. D.42.直線x+2y﹣3=0與直線2x+ay﹣1=0垂直,則a的值為()A.﹣1 B.4 C.1 D.﹣43.如圖,正方形中,分別是的中點,若則()A. B. C. D.4.在長方體中,,,,則異面直線與所成角的大小為()A. B. C. D.或5.函數(shù)的部分圖象如圖所示,為了得到的圖象,只需將的圖象A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位6.如圖,在平行六面體中,M,N分別是所在棱的中點,則MN與平面的位置關(guān)系是()A.MN平面B.MN與平面相交C.MN平面D.無法確定MN與平面的位置關(guān)系7.若直線與圓相切,則()A. B. C. D.8.在ΔABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.若a:b:c=3:4:5,則cosA.35 B.45 C.9.某公司的班車在7:30,8:00,8:30發(fā)車,小明在7:50至8:30之間到達發(fā)車站乘坐班車,且到達發(fā)車站的時刻是隨機的,則他等車時間不超過10分鐘的概率是A. B. C. D.10.直線的傾斜角大小()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不等式的解集為_________.12.設(shè)數(shù)列是首項為0的遞增數(shù)列,函數(shù)滿足:對于任意的實數(shù),總有兩個不同的根,則的通項公式是________.13.已知函數(shù),若對任意都有()成立,則的最小值為__________.14.讀程序,完成下列題目:程序如圖:(1)若執(zhí)行程序時,沒有執(zhí)行語句,則輸入的的范圍是_______;(2)若執(zhí)行結(jié)果,輸入的的值可能是___.15.如圖所示,已知,用表示.16.如圖,在B處觀測到一貨船在北偏西方向上距離B點1千米的A處,碼頭C位于B的正東千米處,該貨船先由A朝著C碼頭C勻速行駛了5分鐘到達C,又沿著與AC垂直的方向以同樣的速度勻速行駛5分鐘后到達點D,此時該貨船到點B的距離是________千米.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等比數(shù)列的公比是的等差中項,數(shù)列的前項和為.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.18.在中,角A,B,C的對邊分別是a,b,c,.(1)求角A的大?。唬?)若,,求的面積.19.在中,內(nèi)角、、的對邊分別為、、,且.(1)求角的大??;(2)若,求的最大值及相應(yīng)的角的余弦值.20.已知f(α)=,其中α≠kπ(k∈Z).(1)化簡f(α);(2)若f(+β)=-,β是第四象限的角,求sin(2β+)的值.21.如圖,在三棱錐中,平面平面為等邊三角形,,且,分別為的中點.(1)求證:平面平面;(2)求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
化簡條件得,化簡,利用基本不等式,即可求解,得到答案.【詳解】由題意,知,可得,則,當(dāng)且僅當(dāng)時,即時取得等號,所以,即的最小值為,故選C.【點睛】本題主要考查了基本不等式的應(yīng)用,其中解答中熟記基本不等式的使用條件:一正、二定、三相等是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、A【解析】
由兩直線垂直的條件,列出方程即可求解,得到答案.【詳解】由題意,直線與直線垂直,則滿足,解得,故選:A.【點睛】本題主要考查了兩直線位置關(guān)系的應(yīng)用,其中解答中熟記兩直線垂直的條件是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、D【解析】試題分析:取向量作為一組基底,則有,所以又,所以,即.4、C【解析】
平移CD到AB,則即為異面直線與所成的角,在直角三角形中即可求解.【詳解】連接AC1,CD//AB,可知即為異面直線與所成的角,在中,,故選.【點睛】本題考查異面直線所成的角.常用方法:1、平移直線到相交;2、向量法.5、B【解析】試題分析:由圖象知,,,,,得,所以,為了得到的圖象,所以只需將的圖象向右平移個長度單位即可,故選D.考點:三角函數(shù)圖象.6、C【解析】
取的中點,連結(jié),可證明平面平面,由于平面,可知平面.【詳解】取的中點,連結(jié),顯然,因為平面,平面,所以平面,平面,又,故平面平面,又因為平面,所以平面.故選C.【點睛】本題考查了直線與平面的位置關(guān)系,考查了線面平行、面面平行的證明,屬于基礎(chǔ)題.7、C【解析】
利用圓心到直線的距離等于圓的半徑即可求解.【詳解】由題得圓的圓心坐標(biāo)為(0,0),所以.故選C【點睛】本題主要考查直線和圓的位置關(guān)系,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.8、D【解析】
設(shè)a=3k,b=4k,c=5k,利用余弦定理求cosC的值.【詳解】設(shè)a=3k,b=4k,c=5k,所以cosC=故選D【點睛】本題主要考查余弦定理,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.9、B【解析】試題分析:由題意,這是幾何概型問題,班車每30分鐘發(fā)出一輛,到達發(fā)車站的時間總長度為40,等車不超過10分鐘的時間長度為20,故所求概率為,選B.【考點】幾何概型【名師點睛】這是全國卷首次考查幾何概型,求解幾何概型問題的關(guān)鍵是確定“測度”,常見的測度有長度、面積、體積等.10、B【解析】
化簡得到,根據(jù)計算得到答案.【詳解】直線,即,,,故.故選:.【點睛】本題考查了直線的傾斜角,意在考查學(xué)生的計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用兩個數(shù)的商是正數(shù)等價于兩個數(shù)同號;將已知的分式不等式轉(zhuǎn)化為整式不等式,求出解集.【詳解】同解于解得或故答案為:【點睛】本題考查解分式不等式,利用等價變形轉(zhuǎn)化為整式不等式是解題的關(guān)鍵.12、【解析】
利用三角函數(shù)的圖象與性質(zhì)、誘導(dǎo)公式和數(shù)列的遞推公式,可得,再利用“累加”法和等差數(shù)列的前n項和公式,即可求解.【詳解】由題意,因為,當(dāng)時,,又因為對任意的實數(shù),總有兩個不同的根,所以,所以,又,對任意的實數(shù),總有兩個不同的根,所以,又,對任意的實數(shù),總有兩個不同的根,所以,由此可得,所以,所以.故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用,以及誘導(dǎo)公式,數(shù)列的遞推關(guān)系式和“累加”方法等知識的綜合應(yīng)用,著重考查了推理與運算能力,屬于中檔試題.13、【解析】
根據(jù)和的取值特點,判斷出兩個值都是最值,然后根據(jù)圖象去確定最小值.【詳解】因為對任意成立,所以取最小值,取最大值;取最小值時,與必為同一周期內(nèi)的最小值和最大值的對應(yīng)的,則,且,故.【點睛】任何一個函數(shù),若有對任何定義域成立,此時必有:,.14、2【解析】
(1)不執(zhí)行語句,說明不滿足條件,,從而得;(2)執(zhí)行程序,有當(dāng)時,,只有,.【詳解】(1)不執(zhí)行語句,說明不滿足條件,,故有.(2)當(dāng)時,,只有,.故答案為:(1)(2);【點睛】本題主要考察程序語言,考查對簡單程序語言的閱讀理解,屬于基礎(chǔ)題.15、【解析】
可采用向量加法和減法公式的線性運算進行求解【詳解】由,整理得【點睛】本題考查向量的線性運算,解題關(guān)鍵在于將所有向量通過向量的加法和減法公式轉(zhuǎn)化成基底向量,屬于中檔題16、3【解析】
先在中,由余弦定理算出和,然后在中由余弦定理即可求出.【詳解】由題意可得,在中,所以由余弦定理得:即,所以因為所以所以所以在中有:即故答案為:3【點睛】本題考查三角形的解法,余弦定理的應(yīng)用,是基本知識的考查.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)先由題意,列出方程組,求出首項與公比,即可得出通項公式;(2)根據(jù)題意,求出,再由(1)的結(jié)果,得到,利用錯位相減法,即可求出結(jié)果.【詳解】(1)因為等比數(shù)列的公比,,是的等差中項,所以,即,解得,因此,;(2)因為數(shù)列的前項和為,所以,()又當(dāng)也滿足上式,所以,;由(1),;所以其前項和①因此②①式減去②式可得:,因此.【點睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合應(yīng)用,以及錯位相減法求數(shù)列的和,熟記等差數(shù)列與等比數(shù)列的通項公式以及求和公式即可,屬于常考題型.18、(1)(2)【解析】
(1)由,結(jié)合,得到求解.(2)據(jù)(1)知.再由余弦定理求得邊,再利用求解.【詳解】(1)因為,,所以,所以,所以,或(舍去).又因為,所以.(2)由(1)知.由余弦定理得所以,即,所以(舍)或.所以的面積.【點睛】本題主要考查了余弦定理和正弦定理的應(yīng)用,還考查了運算求解的能力,屬于中檔題.19、(1)(2)的最大值為,此時【解析】
(1)由正弦定理邊角互化思想結(jié)合內(nèi)角和定理、誘導(dǎo)公式可得出的值,結(jié)合角的取值范圍可得出角的大??;(2)由正弦定理得出,,然后利用三角恒等變換思想將轉(zhuǎn)化為關(guān)于角的三角函數(shù),可得出的值,并求出的值.【詳解】(1)由正弦定理得,即,從而有,即,由得,因為,所以;(2)由正弦定理可知,,則有,,,其中,因為,所以,所以當(dāng)時,取得最大值,此時,所以,的最大值為,此時.【點睛】本題考查正弦定理邊角互化思想的應(yīng)用,考查內(nèi)角和定理、誘導(dǎo)公式,以及三角形中最值的求解,求解時常利用正弦定理將邊轉(zhuǎn)化為角的三角函數(shù)來求解,解題時要充分利用三角恒等變換思想將三角函數(shù)解析式化簡,考查運算求解能力,屬于中等題.20、(1)(2)【解析】
(1)直接利用三角函數(shù)的誘導(dǎo)公式,化簡運算,即可求解;(2)由,得,進一步求得,得到sin2與cos2,再由sin(2+)展開兩角和的正弦求解.【詳解】(1)由題意,可得=;(2)由f(+)==-,得sin.又β是第四象限的角,∴cos=.∴sin2,cos2.∴sin(2+)=sin2cos+cos2sin=.【點睛】本題主要考查了三角函數(shù)的化簡求值,及誘導(dǎo)公式及兩角差的正弦公式的應(yīng)用,其中解答中熟記三家函數(shù)的恒等變換的公式,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.21、(1)證明見詳解;(2).【解析】
(1)由面面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024鋁灰運輸及環(huán)保處理一體化合同3篇
- 職業(yè)學(xué)院工會章程
- 2024標(biāo)準(zhǔn)房屋買賣中介服務(wù)協(xié)議模板版B版
- 2024全新產(chǎn)品發(fā)布會廣告合作合同下載
- 2024設(shè)備購買安裝調(diào)試合同
- 初中語文課堂中要滲透意識形態(tài)
- 2025年度人工智能技術(shù)研發(fā)采購合同范本2篇
- 2024洗車工辭職報告及洗車店客戶數(shù)據(jù)保護與隱私政策合同3篇
- 2024高效追償及擔(dān)保義務(wù)合同范例下載一
- 2024年度物流信息平臺服務(wù)外包合作協(xié)議范本3篇
- DB43∕T 1591-2019 鋰電池正極材料單位產(chǎn)品能源消耗限額及計算方法
- 征信合規(guī)知識線上測試題庫征信知識競賽題庫(題目+答案)
- 貴州省貴陽市2021-2022學(xué)年蘇教版四年級上冊期末數(shù)學(xué)試卷(含答案)
- 新教材高中歷史選擇性必修一全冊知識點總結(jié)
- 2017英語專業(yè)八級改錯真題及答案持續(xù)更新部分詳解文字答案校對版
- 室內(nèi)蒸汽供熱系統(tǒng)
- 小型塑料注射成型機液壓系統(tǒng)設(shè)計
- 《干部廉政檔案》2022年最新模板
- 高支模方案(專家論證定稿)
- 城投集團年度安全管理工作計劃
- 美術(shù)課教案《線造型》
評論
0/150
提交評論