云南省昆明市官渡區(qū)先鋒中學(xué)2024年中考沖刺卷數(shù)學(xué)試題含解析_第1頁(yè)
云南省昆明市官渡區(qū)先鋒中學(xué)2024年中考沖刺卷數(shù)學(xué)試題含解析_第2頁(yè)
云南省昆明市官渡區(qū)先鋒中學(xué)2024年中考沖刺卷數(shù)學(xué)試題含解析_第3頁(yè)
云南省昆明市官渡區(qū)先鋒中學(xué)2024年中考沖刺卷數(shù)學(xué)試題含解析_第4頁(yè)
云南省昆明市官渡區(qū)先鋒中學(xué)2024年中考沖刺卷數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省昆明市官渡區(qū)先鋒中學(xué)2024年中考沖刺卷數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.已知關(guān)于x的不等式ax<b的解為x>-2,則下列關(guān)于x的不等式中,解為x<2的是()A.a(chǎn)x+2<-b+2 B.–ax-1<b-1 C.a(chǎn)x>b D.2.如圖,是由一個(gè)圓柱體和一個(gè)長(zhǎng)方體組成的幾何體,其主視圖是()A. B. C. D.3.在中,,,下列結(jié)論中,正確的是()A. B.C. D.4.下列美麗的壯錦圖案是中心對(duì)稱(chēng)圖形的是()A. B. C. D.5.下列圖標(biāo)中,是中心對(duì)稱(chēng)圖形的是()A. B.C. D.6.如圖,數(shù)軸上的三點(diǎn)所表示的數(shù)分別為,其中,如果|那么該數(shù)軸的原點(diǎn)的位置應(yīng)該在()A.點(diǎn)的左邊 B.點(diǎn)與點(diǎn)之間 C.點(diǎn)與點(diǎn)之間 D.點(diǎn)的右邊7.在一個(gè)不透明的口袋里有紅、黃、藍(lán)三種顏色的小球,這些球除顏色外都相同,其中有5個(gè)紅球,4個(gè)藍(lán)球.若隨機(jī)摸出一個(gè)藍(lán)球的概率為,則隨機(jī)摸出一個(gè)黃球的概率為()A. B. C. D.8.在﹣3,0,4,這四個(gè)數(shù)中,最大的數(shù)是()A.﹣3 B.0 C.4 D.9.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點(diǎn)分別落在直線m,n上,若∠1=20°,則∠2的度數(shù)為()A.20° B.30° C.45° D.50°10.為了開(kāi)展陽(yáng)光體育活動(dòng),某班計(jì)劃購(gòu)買(mǎi)毽子和跳繩兩種體育用品,共花費(fèi)35元,毽子單價(jià)3元,跳繩單價(jià)5元,購(gòu)買(mǎi)方案有()A.1種 B.2種 C.3種 D.4種二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知正方形ABCD,AB=1,分別以點(diǎn)A、C為圓心畫(huà)圓,如果點(diǎn)B在圓A外,且圓A與圓C外切,那么圓C的半徑長(zhǎng)r的取值范圍是_____.12.因式分解:9a3b﹣ab=_____.13.如圖,在邊長(zhǎng)為3的正方形ABCD中,點(diǎn)E是BC邊上的點(diǎn),EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點(diǎn)P,則PC的長(zhǎng)為_(kāi)____.14.已知點(diǎn)A,B的坐標(biāo)分別為(﹣2,3)、(1,﹣2),將線段AB平移,得到線段A′B′,其中點(diǎn)A與點(diǎn)A′對(duì)應(yīng),點(diǎn)B與點(diǎn)B′對(duì)應(yīng),若點(diǎn)A′的坐標(biāo)為(2,﹣3),則點(diǎn)B′的坐標(biāo)為_(kāi)_______.15.PA、PB分別切⊙O于點(diǎn)A、B,∠PAB=60°,點(diǎn)C在⊙O上,則∠ACB的度數(shù)為_(kāi)____.16.計(jì)算(﹣a)3?a2的結(jié)果等于_____.三、解答題(共8題,共72分)17.(8分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動(dòng)點(diǎn),直線AP、BP分別交l于M、N兩點(diǎn).(1)當(dāng)∠A=30°時(shí),MN的長(zhǎng)是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請(qǐng)寫(xiě)出相應(yīng)的最值,若不存在,請(qǐng)說(shuō)明理由;(4)以MN為直徑的一系列圓是否經(jīng)過(guò)一個(gè)定點(diǎn),若是,請(qǐng)確定該定點(diǎn)的位置,若不是,請(qǐng)說(shuō)明理由.18.(8分)如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn).當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DE與AC的位置關(guān)系是;②設(shè)△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關(guān)系是.猜想論證當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S1的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請(qǐng)你證明小明的猜想.拓展探究已知∠ABC=60°,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使S△DCF=S△BDC,請(qǐng)直接寫(xiě)出相應(yīng)的BF的長(zhǎng)19.(8分)如圖,⊙O的直徑DF與弦AB交于點(diǎn)E,C為⊙O外一點(diǎn),CB⊥AB,G是直線CD上一點(diǎn),∠ADG=∠ABD.求證:AD?CE=DE?DF;說(shuō)明:(1)如果你經(jīng)歷反復(fù)探索,沒(méi)有找到解決問(wèn)題的方法,請(qǐng)你把探索過(guò)程中的某種思路過(guò)程寫(xiě)出來(lái)(要求至少寫(xiě)3步);(2)在你經(jīng)歷說(shuō)明(1)的過(guò)程之后,可以從下列①、②、③中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.20.(8分)在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),以AD為直角邊在AD右側(cè)作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當(dāng)點(diǎn)D在線段BC上時(shí),證明BC=CE+CD.應(yīng)用:在探究的條件下,若AB=,CD=1,則△DCE的周長(zhǎng)為.拓展:(1)如圖②,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),BC、CD、CE之間的數(shù)量關(guān)系為.(2)如圖③,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),BC、CD、CE之間的數(shù)量關(guān)系為.21.(8分)如圖所示,某小組同學(xué)為了測(cè)量對(duì)面樓AB的高度,分工合作,有的組員測(cè)得兩樓間距離為40米,有的組員在教室窗戶(hù)處測(cè)得樓頂端A的仰角為30°,底端B的俯角為10°,請(qǐng)你根據(jù)以上數(shù)據(jù),求出樓AB的高度.(精確到0.1米)(參考數(shù)據(jù):sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,≈1.41,≈1.73)22.(10分)計(jì)算:.23.(12分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點(diǎn)E,F(xiàn)同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng),已知點(diǎn)F的移動(dòng)速度是點(diǎn)E移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點(diǎn)移動(dòng)距離為x(0<x<6).(1)∠DCB=度,當(dāng)點(diǎn)G在四邊形ABCD的邊上時(shí),x=;(2)在點(diǎn)E,F(xiàn)的移動(dòng)過(guò)程中,點(diǎn)G始終在BD或BD的延長(zhǎng)線上運(yùn)動(dòng),求點(diǎn)G在線段BD的中點(diǎn)時(shí)x的值;(3)當(dāng)2<x<6時(shí),求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時(shí),y有最大值?并求出y的最大值.24.如圖,正方形ABCD中,M為BC上一點(diǎn),F(xiàn)是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N.求證:△ABM∽△EFA;若AB=12,BM=5,求DE的長(zhǎng).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】∵關(guān)于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項(xiàng)中的不等式.故選B.2、B【解析】試題分析:長(zhǎng)方體的主視圖為矩形,圓柱的主視圖為矩形,根據(jù)立體圖形可得:主視圖的上面和下面各為一個(gè)矩形,且下面矩形的長(zhǎng)比上面矩形的長(zhǎng)要長(zhǎng)一點(diǎn),兩個(gè)矩形的寬一樣大?。键c(diǎn):三視圖.3、C【解析】

直接利用銳角三角函數(shù)關(guān)系分別計(jì)算得出答案.【詳解】∵,,∴,∴,故選項(xiàng)A,B錯(cuò)誤,∵,∴,故選項(xiàng)C正確;選項(xiàng)D錯(cuò)誤.故選C.【點(diǎn)睛】此題主要考查了銳角三角函數(shù)關(guān)系,熟練掌握銳角三角函數(shù)關(guān)系是解題關(guān)鍵.4、A【解析】【分析】根據(jù)中心對(duì)稱(chēng)圖形的定義逐項(xiàng)進(jìn)行判斷即可得.【詳解】A、是中心對(duì)稱(chēng)圖形,故此選項(xiàng)正確;B、不是中心對(duì)稱(chēng)圖形,故此選項(xiàng)錯(cuò)誤;C、不是中心對(duì)稱(chēng)圖形,故此選項(xiàng)錯(cuò)誤;D、不是中心對(duì)稱(chēng)圖形,故此選項(xiàng)錯(cuò)誤,故選A.【點(diǎn)睛】本題主要考查了中心對(duì)稱(chēng)圖形,熟練掌握中心對(duì)稱(chēng)圖形的定義是解題的關(guān)鍵;把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱(chēng)圖形.5、B【解析】

根據(jù)中心對(duì)稱(chēng)圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是中心對(duì)稱(chēng)圖形,故本選項(xiàng)錯(cuò)誤;B、是中心對(duì)稱(chēng)圖形,故本選項(xiàng)正確;C、不是中心對(duì)稱(chēng)圖形,故本選項(xiàng)錯(cuò)誤;D、不是中心對(duì)稱(chēng)圖形,故本選項(xiàng)錯(cuò)誤.故選B.【點(diǎn)睛】本題考查了中心對(duì)稱(chēng)圖形的概念:中心對(duì)稱(chēng)圖形是要尋找對(duì)稱(chēng)中心,旋轉(zhuǎn)180度后與原圖重合.6、C【解析】

根據(jù)絕對(duì)值是數(shù)軸上表示數(shù)的點(diǎn)到原點(diǎn)的距離,分別判斷出點(diǎn)A、B、C到原點(diǎn)的距離的大小,從而得到原點(diǎn)的位置,即可得解.【詳解】∵|a|>|c|>|b|,

∴點(diǎn)A到原點(diǎn)的距離最大,點(diǎn)C其次,點(diǎn)B最小,

又∵AB=BC,

∴原點(diǎn)O的位置是在點(diǎn)B、C之間且靠近點(diǎn)B的地方.

故選:C.【點(diǎn)睛】此題考查了實(shí)數(shù)與數(shù)軸,理解絕對(duì)值的定義是解題的關(guān)鍵.7、A【解析】

設(shè)黃球有x個(gè),根據(jù)摸出一個(gè)球是藍(lán)球的概率是,得出黃球的個(gè)數(shù),再根據(jù)概率公式即可得出隨機(jī)摸出一個(gè)黃球的概率.【詳解】解:設(shè)袋子中黃球有x個(gè),根據(jù)題意,得:,解得:x=3,即袋中黃球有3個(gè),所以隨機(jī)摸出一個(gè)黃球的概率為,故選A.【點(diǎn)睛】此題主要考查了概率公式的應(yīng)用,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.得到所求的情況數(shù)是解決本題的關(guān)鍵.8、C【解析】試題分析:根據(jù)實(shí)數(shù)的大小比較法則,正數(shù)大于0,0大于負(fù)數(shù),兩個(gè)負(fù)數(shù)相比,絕對(duì)值大的反而?。虼?,在﹣3,0,1,這四個(gè)數(shù)中,﹣3<0<<1,最大的數(shù)是1.故選C.9、D【解析】

根據(jù)兩直線平行,內(nèi)錯(cuò)角相等計(jì)算即可.【詳解】因?yàn)閙∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【點(diǎn)睛】本題主要考查平行線的性質(zhì),清楚兩直線平行,內(nèi)錯(cuò)角相等是解答本題的關(guān)鍵.10、B【解析】

首先設(shè)毽子能買(mǎi)x個(gè),跳繩能買(mǎi)y根,根據(jù)題意列方程即可,再根據(jù)二元一次方程求解.【詳解】解:設(shè)毽子能買(mǎi)x個(gè),跳繩能買(mǎi)y根,根據(jù)題意可得:3x+5y=35,y=7-x,∵x、y都是正整數(shù),∴x=5時(shí),y=4;x=10時(shí),y=1;∴購(gòu)買(mǎi)方案有2種.故選B.【點(diǎn)睛】本題主要考查二元一次方程的應(yīng)用,關(guān)鍵在于根據(jù)題意列方程.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、﹣1<r<.【解析】

首先根據(jù)題意求得對(duì)角線AC的長(zhǎng),設(shè)圓A的半徑為R,根據(jù)點(diǎn)B在圓A外,得出0<R<1,則-1<-R<0,再根據(jù)圓A與圓C外切可得R+r=,利用不等式的性質(zhì)即可求出r的取值范圍.【詳解】∵正方形ABCD中,AB=1,

∴AC=,

設(shè)圓A的半徑為R,

∵點(diǎn)B在圓A外,

∴0<R<1,

∴-1<-R<0,

∴-1<-R<.

∵以A、C為圓心的兩圓外切,

∴兩圓的半徑的和為,

∴R+r=,r=-R,

∴-1<r<.

故答案為:-1<r<.【點(diǎn)睛】本題考查了圓與圓的位置關(guān)系,點(diǎn)與圓的位置關(guān)系,正方形的性質(zhì),勾股定理,不等式的性質(zhì).掌握位置關(guān)系與數(shù)量之間的關(guān)系是解題的關(guān)鍵.12、ab(3a+1)(3a-1).【解析】試題分析:原式提取公因式后,利用平方差公式分解即可.試題解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考點(diǎn):提公因式法與公式法的綜合運(yùn)用.13、【解析】

在AB上取BN=BE,連接EN,根據(jù)已知及正方形的性質(zhì)利用ASA判定△ANE≌△ECP,從而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解決問(wèn)題.【詳解】在AB上取BN=BE,連接EN,作PM⊥BC于M.∵四邊形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題,屬于中考??碱}型.14、(5,﹣8)【解析】

各對(duì)應(yīng)點(diǎn)之間的關(guān)系是橫坐標(biāo)加4,縱坐標(biāo)減6,那么讓點(diǎn)B的橫坐標(biāo)加4,縱坐標(biāo)減6即為點(diǎn)B′的坐標(biāo).【詳解】由A(-2,3)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為(2,-13),坐標(biāo)的變化規(guī)律可知:各對(duì)應(yīng)點(diǎn)之間的關(guān)系是橫坐標(biāo)加4,縱坐標(biāo)減6,∴點(diǎn)B′的橫坐標(biāo)為1+4=5;縱坐標(biāo)為-2-6=-8;即所求點(diǎn)B′的坐標(biāo)為(5,-8).故答案為(5,-8)【點(diǎn)睛】此題主要考查了坐標(biāo)與圖形的變化-平移,解決本題的關(guān)鍵是根據(jù)已知對(duì)應(yīng)點(diǎn)找到各對(duì)應(yīng)點(diǎn)之間的變化規(guī)律.15、60°或120°.【解析】

連接OA、OB,根據(jù)切線的性質(zhì)得出∠OAP的度數(shù),∠OBP的度數(shù);再根據(jù)四邊形的內(nèi)角和是360°,求出∠AOB的度數(shù),有圓周角定理或圓內(nèi)接四邊形的性質(zhì),求出∠ACB的度數(shù)即可.【詳解】解:連接OA、OB.∵PA,PB分別切⊙O于點(diǎn)A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四邊形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴即當(dāng)C在D處時(shí),∠ACB=60°.在四邊形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度數(shù)為60°或120°,故答案為60°或120°.【點(diǎn)睛】本題考查的是切線的性質(zhì)定理,圓內(nèi)接四邊形的性質(zhì),是一道基礎(chǔ)題.16、﹣a5【解析】

根據(jù)冪的乘方和積的乘方運(yùn)算法則計(jì)算即可.【詳解】解:(-a)3?a2=-a3?a2=-a3+2=-a5.故答案為:-a5.【點(diǎn)睛】本題考查了冪的乘方和積的乘方運(yùn)算.三、解答題(共8題,共72分)17、(1);(2)MC?NC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經(jīng)過(guò)定點(diǎn)D,此定點(diǎn)D在直線AB上且CD的長(zhǎng)為.【解析】

(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據(jù)MC=ACtan∠A=、CN=可得答案;(2)證△ACM∽△NCB得,由此即可求得答案;(3)設(shè)MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動(dòng)點(diǎn)知a>0,可得b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)得a+b不存在最大值,當(dāng)a=b時(shí),a+b最小,據(jù)此求解可得;(4)設(shè)該圓與AC的交點(diǎn)為D,連接DM、DN,證△MDC∽△DNC得,即MC?NC=DC2=5,即DC=,據(jù)此知以MN為直徑的一系列圓經(jīng)過(guò)定點(diǎn)D,此頂點(diǎn)D在直線AB上且CD的長(zhǎng)為.【詳解】(1)如圖所示,根據(jù)題意知,AO=OB=2、OC=3,則AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直線l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,則MN=MC+CN=+=,故答案為:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC?NC=AC?BC=5×1=5;(3)設(shè)MC=a、NC=b,由(2)知ab=5,∵P是圓上異于A、B的動(dòng)點(diǎn),∴a>0,∴b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)知,a+b不存在最大值,當(dāng)a=b時(shí),a+b最小,由a=b得a=,解之得a=(負(fù)值舍去),此時(shí)b=,此時(shí)a+b的最小值為2;(4)如圖,設(shè)該圓與AC的交點(diǎn)為D,連接DM、DN,∵M(jìn)N為直徑,∴∠MDN=90°,則∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,則△MDC∽△DNC,∴,即MC?NC=DC2,由(2)知MC?NC=5,∴DC2=5,∴DC=,∴以MN為直徑的一系列圓經(jīng)過(guò)定點(diǎn)D,此定點(diǎn)D在直線AB上且CD的長(zhǎng)為.【點(diǎn)睛】本題考查的是圓的綜合問(wèn)題,解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用、反比例函數(shù)的性質(zhì)等知識(shí)點(diǎn).18、解:(1)①DE∥AC.②.(1)仍然成立,證明見(jiàn)解析;(3)3或2.【解析】

(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過(guò)D作DN⊥AC交AC于點(diǎn)N,過(guò)E作EM⊥AC交AC延長(zhǎng)線于M,過(guò)C作CF⊥AB交AB于點(diǎn)F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過(guò)點(diǎn)D作DM⊥BC于M,過(guò)點(diǎn)A作AN⊥CE交EC的延長(zhǎng)線于N,

∵△DEC是由△ABC繞點(diǎn)C旋轉(zhuǎn)得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

即S1=S1;(3)如圖,過(guò)點(diǎn)D作DF1∥BE,易求四邊形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此時(shí)S△DCF1=S△BDE;

過(guò)點(diǎn)D作DF1⊥BD,

∵∠ABC=20°,F(xiàn)1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等邊三角形,

∴DF1=DF1,過(guò)點(diǎn)D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,點(diǎn)D是角平分線上一點(diǎn),

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-150°-20°=150°,

∴∠CDF1=∠CDF1,

∵在△CDF1和△CDF1中,,

∴△CDF1≌△CDF1(SAS),

∴點(diǎn)F1也是所求的點(diǎn),

∵∠ABC=20°,點(diǎn)D是角平分線上一點(diǎn),DE∥AB,

∴∠DBC=∠BDE=∠ABD=×20°=30°,

又∵BD=3,

∴BE=×3÷cos30°=3,

∴BF1=3,BF1=BF1+F1F1=3+3=2,

故BF的長(zhǎng)為3或2.19、(1)見(jiàn)解析;(2)見(jiàn)解析.【解析】

連接AF,由直徑所對(duì)的圓周角是直角、同弧所對(duì)的圓周角相等的性質(zhì),證得直線CD是⊙O的切線,若證AD?CE=DE?DF,只要征得△ADF∽△DEC即可.在第一問(wèn)中只能證得∠EDC=∠DAF=90°,所以在第二問(wèn)中只要證得∠DEC=∠ADF即可解答此題.【詳解】(1)連接AF,∵DF是⊙O的直徑,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直線CD是⊙O的切線∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)選?、偻瓿勺C明∵直線CD是⊙O的切線,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD?CE=DE?DF.【點(diǎn)睛】此題考查了切線的性質(zhì)與判定、弦切角定理、相似三角形的判定與性質(zhì)等知識(shí).注意乘積的形式可以轉(zhuǎn)化為比例的形式,通過(guò)證明三角形相似得出.還要注意構(gòu)造直徑所對(duì)的圓周角是圓中的常見(jiàn)輔助線.20、探究:證明見(jiàn)解析;應(yīng)用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結(jié)論;

應(yīng)用:先算出BC,進(jìn)而算出BD,再用勾股定理求出DE,即可得出結(jié)論;

拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論;

(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,

∴∠BAC=∠DAE.

∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,

∴∠BAD=∠CAE.

∵AB=AC,AD=AE,

∴△ABD≌△ACE.

∴BD=CE.

∵BC=BD+CD,

∴BC=CE+CD.

應(yīng)用:在Rt△ABC中,AB=AC=,

∴∠ABC=∠ACB=45°,BC=2,

∵CD=1,

∴BD=BC-CD=1,

由探究知,△ABD≌△ACE,

∴∠ACE=∠ABD=45°,

∴∠DCE=90°,

在Rt△BCE中,CD=1,CE=BD=1,

根據(jù)勾股定理得,DE=,

∴△DCE的周長(zhǎng)為CD+CE+DE=2+

故答案為2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE

∴BC=CD-BD=CD-CE,

故答案為BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.

∴BD=CE

∴BC=BD-CD=CE-CD,

故答案為BC=CE-CD.21、30.3米.【解析】試題分析:過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,在Rt△ADE中,求出AE的長(zhǎng),在Rt△DEB中,求出BE的長(zhǎng)即可得.試題解析:過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,在Rt△ADE中,∠AED=90°,tan∠1=,∠1=30°,∴AE=DE×tan∠1=40×tan30°=40×≈40×1.73×≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=,∠2=10°,∴BE=DE×tan∠2=40×tan10°≈40×0.18=7.2∴AB=AE+BE≈23.1+7.2=30.3米.22、10【解析】【分析】先分別進(jìn)行0次冪的計(jì)算、負(fù)指數(shù)冪的計(jì)算、二次根式以及絕對(duì)值的化簡(jiǎn)、特殊角的三角函數(shù)值,然后再按運(yùn)算順序進(jìn)行計(jì)算即可.【詳解】原式=1+9-+4=10-+=10.【點(diǎn)睛】本題考查了實(shí)數(shù)的混合運(yùn)算,涉及到0指數(shù)冪、負(fù)指數(shù)冪、特殊角的三角函數(shù)值等,熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵.23、(1)30;2;(2)x=1;(3)當(dāng)x=時(shí),y最大=;【解析】

(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當(dāng)?shù)冗吶切巍鱁GF的高=時(shí),點(diǎn)G在AD上,此時(shí)x=2;(2)根據(jù)勾股定理求出的長(zhǎng)度,根據(jù)三角函數(shù),求出∠ADB=30°,根據(jù)中點(diǎn)的定義得出根據(jù)等邊三角形的性質(zhì)得到,即可求出x的值;

(3)圖2,圖3三種情形解決問(wèn)題.①當(dāng)2<x<3時(shí),如圖2中,點(diǎn)E

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論