2024屆四川省內(nèi)江市名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
2024屆四川省內(nèi)江市名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
2024屆四川省內(nèi)江市名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
2024屆四川省內(nèi)江市名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
2024屆四川省內(nèi)江市名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆四川省內(nèi)江市名校中考適應(yīng)性考試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正確的是()A. B. C. D.2.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于B、C點(diǎn),則BC=()A.6 B.6 C.3 D.33.2014年我省財政收入比2013年增長8.9%,2015年比2014年增長9.5%,若2013年和2015年我省財政收入分別為a億元和b億元,則a、b之間滿足的關(guān)系式為()A.b=a(1+8.9%+9.5%) B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%) D.b=a4.如圖,折疊矩形紙片ABCD的一邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,若AB=8,BC=10,則△CEF的周長為()A.12 B.16 C.18 D.245.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a(chǎn)>b>cB.一次函數(shù)y=ax+c的圖象不經(jīng)第四象限C.m(am+b)+b<a(m是任意實(shí)數(shù))D.3b+2c>06.拒絕“餐桌浪費(fèi)”,刻不容緩.節(jié)約一粒米的帳:一個人一日三餐少浪費(fèi)一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個數(shù)據(jù)用科學(xué)記數(shù)法表示為()A. B. C. D..7.下列計算結(jié)果為a6的是()A.a(chǎn)2?a3B.a(chǎn)12÷a2C.(a2)3D.(﹣a2)38.互聯(lián)網(wǎng)“微商”經(jīng)營已成為大眾創(chuàng)業(yè)新途徑,某微信平臺上一件商品標(biāo)價為200元,按標(biāo)價的五折銷售,仍可獲利20元,則這件商品的進(jìn)價為()A.120元 B.100元 C.80元 D.60元9.2017年新設(shè)了雄安新區(qū),周邊經(jīng)濟(jì)受到刺激綜合實(shí)力大幅躍升,其中某地區(qū)生產(chǎn)總值預(yù)計可增長到305.5億元其中305.5億用科學(xué)記數(shù)法表示為()A.305.5×104B.3.055×102C.3.055×1010D.3.055×101110.如圖,菱形ABCD中,∠B=60°,AB=4,以AD為直徑的⊙O交CD于點(diǎn)E,則的長為()A. B. C. D.11.據(jù)統(tǒng)計,第22屆冬季奧林匹克運(yùn)動會的電視轉(zhuǎn)播時間長達(dá)88000小時,社交網(wǎng)站和國際奧委會官方網(wǎng)站也創(chuàng)下冬奧會收看率紀(jì)錄.用科學(xué)記數(shù)法表示88000為()A.0.88×105B.8.8×104C.8.8×105D.8.8×10612.點(diǎn)P(﹣2,5)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為()A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,將△ABC折疊,使點(diǎn)B恰好落在邊AC上,與點(diǎn)B′重合,AE為折痕,則EB′=_______.14.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫出所有正確結(jié)論的序號).15.如果點(diǎn)P1(2,y1)、P2(3,y2)在拋物線上,那么y1______y2.(填“>”,“<”或“=”).16.如圖,一個直角三角形紙片,剪去直角后,得到一個四邊形,則∠1+∠2=_______度.17.2017年7月27日上映的國產(chǎn)電影《戰(zhàn)狼2》,風(fēng)靡全國.劇中“犯我中華者,雖遠(yuǎn)必誅”鼓舞人心,彰顯了祖國的強(qiáng)大實(shí)力與影響力,累計票房56.8億元.將56.8億元用科學(xué)記數(shù)法表示為_____元.18.因式分解:2m2﹣8n2=.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,熱氣球的探測器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.20.(6分)九年級學(xué)生到距離學(xué)校6千米的百花公園去春游,一部分學(xué)生步行前往,20分鐘后另一部分學(xué)生騎自行車前往,設(shè)(分鐘)為步行前往的學(xué)生離開學(xué)校所走的時間,步行學(xué)生走的路程為千米,騎自行車學(xué)生騎行的路程為千米,關(guān)于的函數(shù)圖象如圖所示.(1)求關(guān)于的函數(shù)解析式;(2)步行的學(xué)生和騎自行車的學(xué)生誰先到達(dá)百花公園,先到了幾分鐘?21.(6分)為了保護(hù)視力,學(xué)校開展了全校性的視力保健活動,活動前,隨機(jī)抽取部分學(xué)生,檢查他們的視力,結(jié)果如圖所示(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn),精確到0.1);活動后,再次檢查這部分學(xué)生的視力,結(jié)果如表所示分組頻數(shù)4.0≤x<4.224.2≤x<4.434.4≤x<4.654.6≤x<4.884.8≤x<5.0175.0≤x<5.25(1)求活動所抽取的學(xué)生人數(shù);(2)若視力達(dá)到4.8及以上為達(dá)標(biāo),計算活動前該校學(xué)生的視力達(dá)標(biāo)率;(3)請選擇適當(dāng)?shù)慕y(tǒng)計量,從兩個不同的角度評價視力保健活動的效果.22.(8分)對于平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點(diǎn)的“理想值”,記作.如的“理想值”.(1)①若點(diǎn)在直線上,則點(diǎn)的“理想值”等于_______;②如圖,,的半徑為1.若點(diǎn)在上,則點(diǎn)的“理想值”的取值范圍是_______.(2)點(diǎn)在直線上,的半徑為1,點(diǎn)在上運(yùn)動時都有,求點(diǎn)的橫坐標(biāo)的取值范圍;(3),是以為半徑的上任意一點(diǎn),當(dāng)時,畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)23.(8分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CP=CQ=2,將三角板CPQ繞點(diǎn)C旋轉(zhuǎn)(保持點(diǎn)P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當(dāng)三角板CPQ繞點(diǎn)C旋轉(zhuǎn)到點(diǎn)A、P、Q在同一直線時,求AP的長;設(shè)射線AP與射線BQ相交于點(diǎn)E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.24.(10分)如圖,在平面直角坐標(biāo)系中,四邊形的頂點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)在第一象限,點(diǎn)在第四象限,點(diǎn)在軸的正半軸上,且.(1)求點(diǎn)和點(diǎn)的坐標(biāo);(2)點(diǎn)是線段上的一個動點(diǎn)(點(diǎn)不與點(diǎn)重合),以每秒個單位的速度由點(diǎn)向點(diǎn)運(yùn)動,過點(diǎn)的直線與軸平行,直線交邊或邊于點(diǎn),交邊或邊于點(diǎn),設(shè)點(diǎn).運(yùn)動時間為,線段的長度為,已知時,直線恰好過點(diǎn).①當(dāng)時,求關(guān)于的函數(shù)關(guān)系式;②點(diǎn)出發(fā)時點(diǎn)也從點(diǎn)出發(fā),以每秒個單位的速度向點(diǎn)運(yùn)動,點(diǎn)停止時點(diǎn)也停止.設(shè)的面積為,求與的函數(shù)關(guān)系式;③直接寫出②中的最大值是.25.(10分)【發(fā)現(xiàn)證明】如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小聰把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.【類比引申】(1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;【聯(lián)想拓展】(2)如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.26.(12分)作圖題:在∠ABC內(nèi)找一點(diǎn)P,使它到∠ABC的兩邊的距離相等,并且到點(diǎn)A、C的距離也相等.(寫出作法,保留作圖痕跡)27.(12分)我市某中學(xué)藝術(shù)節(jié)期間,向全校學(xué)生征集書畫作品.九年級美術(shù)王老師從全年級14個班中隨機(jī)抽取了4個班,對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.王老師采取的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),王老師所調(diào)查的4個班征集到作品共件,其中b班征集到作品件,請把圖2補(bǔ)充完整;王老師所調(diào)查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現(xiàn)在要在其中抽兩人去參加學(xué)校總結(jié)表彰座談會,請直接寫出恰好抽中一男一女的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】∵AD//BC,DE//AB,∴四邊形ABED是平行四邊形,∴,,∴選項(xiàng)A、C錯誤,選項(xiàng)D正確,選項(xiàng)B錯誤,故選D.2、A【解析】試題分析:根據(jù)垂徑定理先求BC一半的長,再求BC的長.解:如圖所示,設(shè)OA與BC相交于D點(diǎn).∵AB=OA=OB=6,∴△OAB是等邊三角形.又根據(jù)垂徑定理可得,OA平分BC,利用勾股定理可得BD=所以BC=2BD=.故選A.點(diǎn)睛:本題主要考查垂徑定理和勾股定理.解題的關(guān)鍵在于要利用好題中的條件圓O與圓A的半徑相等,從而得出△OAB是等邊三角形,為后繼求解打好基礎(chǔ).3、C【解析】

根據(jù)2013年我省財政收入和2014年我省財政收入比2013年增長8.9%,求出2014年我省財政收入,再根據(jù)出2015年比2014年增長9.5%,2015年我省財政收為b億元,即可得出a、b之間的關(guān)系式.【詳解】∵2013年我省財政收入為a億元,2014年我省財政收入比2013年增長8.9%,∴2014年我省財政收入為a(1+8.9%)億元,∵2015年比2014年增長9.5%,2015年我省財政收為b億元,∴2015年我省財政收為b=a(1+8.9%)(1+9.5%);故選C.【點(diǎn)睛】此題考查了列代數(shù)式,關(guān)鍵是根據(jù)題意求出2014年我省財政的收入,是一道基礎(chǔ)題.4、A【解析】

解:∵四邊形ABCD為矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直線AE折疊,頂點(diǎn)D恰好落在BC邊上的F處,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC-BF=10-6=4,∴△CEF的周長為:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故選A.5、D【解析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項(xiàng)錯誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經(jīng)一、三、四象限,故此選項(xiàng)錯誤;C.當(dāng)x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項(xiàng)錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當(dāng)x=1,y>0,∴當(dāng)x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項(xiàng)正確;故選D.點(diǎn)睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)與方程之間的轉(zhuǎn)換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.6、C【解析】

用科學(xué)記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】32400000=3.24×107元.

故選C.【點(diǎn)睛】此題主要考查了用科學(xué)記數(shù)法表示較大的數(shù),一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵.7、C【解析】

分別根據(jù)同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運(yùn)算法則逐一計算可得.【詳解】A、a2?a3=a5,此選項(xiàng)不符合題意;

B、a12÷a2=a10,此選項(xiàng)不符合題意;

C、(a2)3=a6,此選項(xiàng)符合題意;

D、(-a2)3=-a6,此選項(xiàng)不符合題意;

故選C.【點(diǎn)睛】本題主要考查冪的運(yùn)算,解題的關(guān)鍵是掌握同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運(yùn)算法則.8、C【解析】

解:設(shè)該商品的進(jìn)價為x元/件,依題意得:(x+20)÷=200,解得:x=1.∴該商品的進(jìn)價為1元/件.故選C.9、C【解析】解:305.5億=3.055×1.故選C.10、B【解析】

連接OE,由菱形的性質(zhì)得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠DOE=60°,再由弧長公式即可得出答案.【詳解】解:連接OE,如圖所示:∵四邊形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的長==;故選B.【點(diǎn)睛】本題考查弧長公式、菱形的性質(zhì)、等腰三角形的性質(zhì)等知識;熟練掌握菱形的性質(zhì),求出∠DOE的度數(shù)是解決問題的關(guān)鍵.11、B【解析】試題分析:根據(jù)科學(xué)記數(shù)法的定義,科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當(dāng)該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當(dāng)該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點(diǎn)前的1個0).因此,∵88000一共5位,∴88000=8.88×104.故選B.考點(diǎn):科學(xué)記數(shù)法.12、D【解析】

根據(jù)關(guān)于y軸對稱點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變可得答案.【詳解】點(diǎn)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為,故選:D.【點(diǎn)睛】本題主要考查了平面直角坐標(biāo)系中點(diǎn)的對稱,熟練掌握點(diǎn)的對稱特點(diǎn)是解決本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.5【解析】在Rt△ABC中,,∵將△ABC折疊得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.設(shè)B′E=BE=x,則CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得.14、①②③【解析】

依據(jù)∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據(jù)△DFP∽△BPH,可得,再根據(jù)BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據(jù)CP=CD,即可得出PD2=PH?CD;根據(jù)三角形面積計算公式,結(jié)合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過P作PM⊥CD,PN⊥BC,設(shè)正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯誤,故答案為:①②③.【點(diǎn)睛】本題考查了正方形的性質(zhì)、相似三角形的判定與性質(zhì)、解直角三角形等知識,正確添加輔助線、靈活運(yùn)用相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.15、>【解析】分析:首先求得拋物線y=﹣x2+2x的對稱軸是x=1,利用二次函數(shù)的性質(zhì),點(diǎn)M、N在對稱軸的右側(cè),y隨著x的增大而減小,得出答案即可.詳解:拋物線y=﹣x2+2x的對稱軸是x=﹣=1.∵a=﹣1<0,拋物線開口向下,1<2<3,∴y1>y2.故答案為>.點(diǎn)睛:本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,二次函數(shù)的性質(zhì),求得對稱軸,掌握二次函數(shù)圖象的性質(zhì)解決問題.16、270【解析】

根據(jù)三角形的內(nèi)角和與平角定義可求解.【詳解】解析:如圖,根據(jù)題意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案為:270度.【點(diǎn)睛】本題主要考查了三角形的內(nèi)角和定理和內(nèi)角與外角之間的關(guān)系.要會熟練運(yùn)用內(nèi)角和定理求角的度數(shù).17、5.68×109【解析】試題解析:科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點(diǎn)移動了多少位,的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,是正數(shù);當(dāng)原數(shù)的絕對值<1時,是負(fù)數(shù).56.8億故答案為18、2(m+2n)(m﹣2n).【解析】試題分析:根據(jù)因式分解法的步驟,有公因式的首先提取公因式,可知首先提取系數(shù)的最大公約數(shù)2,進(jìn)一步發(fā)現(xiàn)提公因式后,可以用平方差公式繼續(xù)分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考點(diǎn):提公因式法與公式法的綜合運(yùn)用.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、這棟高樓的高度是【解析】

過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】過點(diǎn)A作AD⊥BC于點(diǎn)D,依題意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:這棟高樓的高度是.【點(diǎn)睛】本題主要考查了解直角三角形的應(yīng)用-仰角俯角問題,難度適中.對于一般三角形的計算,常用的方法是利用作高線轉(zhuǎn)化為直角三角形的計算.20、;(2)騎自行車的學(xué)生先到達(dá)百花公園,先到了10分鐘.【解析】

(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得關(guān)于的函數(shù)解析式;(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)和題意可以分別求得步行學(xué)生和騎自行車學(xué)生到達(dá)百花公園的時間,從而可以解答本題.【詳解】解:(1)設(shè)關(guān)于的函數(shù)解析式是,,得,即關(guān)于的函數(shù)解析式是;(2)由圖象可知,步行的學(xué)生的速度為:千米/分鐘,步行同學(xué)到達(dá)百花公園的時間為:(分鐘),當(dāng)時,,得,,答:騎自行車的學(xué)生先到達(dá)百花公園,先到了10分鐘.【點(diǎn)睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.21、(1)所抽取的學(xué)生人數(shù)為40人(2)37.5%(3)①視力x<4.4之間活動前有9人,活動后只有5人,人數(shù)明顯減少.②活動前合格率37.5%,活動后合格率55%,說明視力保健活動的效果比較好【解析】【分析】(1)求出頻數(shù)之和即可;(2)根據(jù)合格率=合格人數(shù)÷總?cè)藬?shù)×100%即可得解;(3)從兩個不同的角度分析即可,答案不唯一.【詳解】(1)∵頻數(shù)之和=3+6+7+9+10+5=40,∴所抽取的學(xué)生人數(shù)為40人;(2)活動前該校學(xué)生的視力達(dá)標(biāo)率=×100%=37.5%;(3)①視力x<4.4之間活動前有9人,活動后只有5人,人數(shù)明顯減少;②活動前合格率37.5%,活動后合格率55%,說明視力保健活動的效果比較好.【點(diǎn)睛】本題考查了頻數(shù)分布直方圖、用樣本估計總體等知識,熟知頻數(shù)、合格率等相關(guān)概念是解題的關(guān)鍵.22、(1)①﹣3;②;(2);(3)【解析】

(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點(diǎn)與原點(diǎn)連線與軸夾角越大,可得直線與相切時理想值最大,與x中相切時,理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時,LQ取最小值和最大值,求出點(diǎn)橫坐標(biāo)即可;(3)根據(jù)題意將點(diǎn)轉(zhuǎn)化為直線,點(diǎn)理想值最大時點(diǎn)在上,分析圖形即可.【詳解】(1)①∵點(diǎn)在直線上,∴,∴點(diǎn)的“理想值”=-3,故答案為:﹣3.②當(dāng)點(diǎn)在與軸切點(diǎn)時,點(diǎn)的“理想值”最小為0.當(dāng)點(diǎn)縱坐標(biāo)與橫坐標(biāo)比值最大時,的“理想值”最大,此時直線與切于點(diǎn),設(shè)點(diǎn)Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點(diǎn)的“理想值”為,故答案為:.(2)設(shè)直線與軸、軸的交點(diǎn)分別為點(diǎn),點(diǎn),當(dāng)x=0時,y=3,當(dāng)y=0時,x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當(dāng)與軸相切時,LQ=0,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最大值.作軸于點(diǎn),∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當(dāng)與直線相切時,LQ=,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最小值.作軸于點(diǎn),則.設(shè)直線與直線的交點(diǎn)為.∵直線中,k=,∴,∴,點(diǎn)F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(jìn)(2,m),∴M點(diǎn)在直線x=2上,∵,∴LQ取最大值時,=,∴作直線y=x,與x=2交于點(diǎn)N,當(dāng)M與ON和x軸同時相切時,半徑r最大,根據(jù)題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【點(diǎn)睛】本題是一次函數(shù)和圓的綜合題,主要考查了一次函數(shù)和圓的切線的性質(zhì),解答時要注意做好數(shù)形結(jié)合,根據(jù)圖形進(jìn)行分類討論.23、(1)證明見解析(2)(3)EP+EQ=EC【解析】

(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長;作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即可證Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,則可求得EP、EQ、EC之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如圖2中,作CH⊥PQ于H∵A、P、Q共線,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH中,AH==∴PA=AH﹣PH=-解:結(jié)論:EP+EQ=EC理由:如圖3中,作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,∴EP+EQ=EC【點(diǎn)睛】本題考查幾何變換綜合題,解答關(guān)鍵是等腰直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,添加恰當(dāng)輔助線構(gòu)造全等三角形.24、(1);(2)①;②當(dāng)時,;當(dāng)時,;當(dāng)時,;③.【解析】

(1)根據(jù)等腰直角三角形的性質(zhì)即可解決問題;(2)首先求出直線OA、AB、OC、BC的解析式.①求出R、Q的坐標(biāo),利用兩點(diǎn)間距離公式即可解決問題;②分三種情形分別求解即可解決問題;③利用②中的函數(shù),利用配方法求出最值即可;【詳解】解:(1)由題意是等腰直角三角形,(2),線直的解析式為,直線的解析式時,直線恰好過點(diǎn).,直線的解析式為,直線的解析式為①當(dāng)時,,②當(dāng)時,當(dāng)時,當(dāng)時,③當(dāng)時,,時,的最大值為.當(dāng)時,.時,的值最大,最大值為.當(dāng)時,,時,的最大值為,綜上所述,最大值為故答案為.【點(diǎn)睛】本題考查四邊形綜合題、一次函數(shù)的應(yīng)用、二次函數(shù)的應(yīng)用、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會構(gòu)建一次函數(shù)或二次函數(shù)解決實(shí)際問題,屬于中考壓軸題.25、(1)DF=EF+BE.理由見解析;(2)CF=1.【解析】(1)把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AEF≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根據(jù)勾股定理有FG2=FC2+CG2=BE2+FC2;關(guān)鍵全等三角形的性質(zhì)得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE.理由:如圖1所示,∵AB=AD,∴把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,∵∠ADC=∠ABE=90°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論