![2024屆浙江省樂清市虹橋鎮(zhèn)第六中學中考押題數(shù)學預測卷含解析_第1頁](http://file4.renrendoc.com/view3/M01/16/36/wKhkFmZT3KyALM2PAAG6evG0qMo447.jpg)
![2024屆浙江省樂清市虹橋鎮(zhèn)第六中學中考押題數(shù)學預測卷含解析_第2頁](http://file4.renrendoc.com/view3/M01/16/36/wKhkFmZT3KyALM2PAAG6evG0qMo4472.jpg)
![2024屆浙江省樂清市虹橋鎮(zhèn)第六中學中考押題數(shù)學預測卷含解析_第3頁](http://file4.renrendoc.com/view3/M01/16/36/wKhkFmZT3KyALM2PAAG6evG0qMo4473.jpg)
![2024屆浙江省樂清市虹橋鎮(zhèn)第六中學中考押題數(shù)學預測卷含解析_第4頁](http://file4.renrendoc.com/view3/M01/16/36/wKhkFmZT3KyALM2PAAG6evG0qMo4474.jpg)
![2024屆浙江省樂清市虹橋鎮(zhèn)第六中學中考押題數(shù)學預測卷含解析_第5頁](http://file4.renrendoc.com/view3/M01/16/36/wKhkFmZT3KyALM2PAAG6evG0qMo4475.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省樂清市虹橋鎮(zhèn)第六中學中考押題數(shù)學預測卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<102.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內,在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為()A.2 B.2 C.3 D.3.二次函數(shù)的對稱軸是A.直線 B.直線 C.y軸 D.x軸4.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(
)A.4 B.6 C.8 D.105.下列計算正確的是()A.a3?a3=a9B.(a+b)2=a2+b2C.a2÷a2=0D.(a2)3=a66.如圖是由三個相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B. C. D.7.在平面直角坐標系內,點P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.拒絕“餐桌浪費”,刻不容緩.節(jié)約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個數(shù)據(jù)用科學記數(shù)法表示為()A. B. C. D..9.如圖,四邊形ABCE內接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°10.某市2017年國內生產總值(GDP)比2016年增長了12%,由于受到國際金融危機的影響,預計2018比2017年增長7%,若這兩年GDP年平均增長率為%,則%滿足的關系是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.把多項式9x3﹣x分解因式的結果是_____.12.若點A(3,﹣4)、B(﹣2,m)在同一個反比例函數(shù)的圖象上,則m的值為.13.如圖,小紅將一個正方形紙片剪去一個寬為4cm的長條后,再從剩下的長方形紙片上剪去一個寬為5cm的長條,且剪下的兩個長條的面積相等.問這個正方形的邊長應為多少厘米?設正方形邊長為xcm,則可列方程為_____.14.和平中學自行車停車棚頂部的剖面如圖所示,已知AB=16m,半徑OA=10m,高度CD為____m.15.若方程x2﹣4x+1=0的兩根是x1,x2,則x1(1+x2)+x2的值為_____.16.在今年的春節(jié)黃金周中,全國零售和餐飲企業(yè)實現(xiàn)銷售額約9260億元,比去年春節(jié)黃金周增長10.2%,將9260億用科學記數(shù)法表示為_____________.三、解答題(共8題,共72分)17.(8分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數(shù)的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數(shù)的解析式;(1)求三角形CDE的面積.18.(8分)如圖,△ABC中,AB=8厘米,AC=16厘米,點P從A出發(fā),以每秒2厘米的速度向B運動,點Q從C同時出發(fā),以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應停止運動,設運動的時間為t.⑴用含t的代數(shù)式表示:AP=,AQ=.⑵當以A,P,Q為頂點的三角形與△ABC相似時,求運動時間是多少?19.(8分)某景區(qū)門票價格80元/人,景區(qū)為吸引游客,對門票價格進行動態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過10人的部分打b折,設游客為x人,門票費用為y元,非節(jié)假日門票費用y1(元)及節(jié)假日門票費用y2(元)與游客x(人)之間的函數(shù)關系如圖所示.(1)a=,b=;(2)確定y2與x之間的函數(shù)關系式:(3)導游小王6月10日(非節(jié)假日)帶A旅游團,6月20日(端午節(jié))帶B旅游團到該景區(qū)旅游,兩團共計50人,兩次共付門票費用3040元,求A、B兩個旅游團各多少人?20.(8分)反比例函數(shù)的圖象經過點A(2,3).(1)求這個函數(shù)的解析式;(2)請判斷點B(1,6)是否在這個反比例函數(shù)的圖象上,并說明理由.21.(8分)(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數(shù).(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B的數(shù)量關系以及PB與CD之間的數(shù)量關系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請直接寫出CD的長.22.(10分)先化簡,后求值:,其中.23.(12分)為了解某校九年級學生立定跳遠水平,隨機抽取該年級50名學生進行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.學生立定跳遠測試成績的頻數(shù)分布表分組頻數(shù)1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810請根據(jù)圖表中所提供的信息,完成下列問題:表中a=,b=,樣本成績的中位數(shù)落在范圍內;請把頻數(shù)分布直方圖補充完整;該校九年級共有1000名學生,估計該年級學生立定跳遠成績在2.4≤x<2.8范圍內的學生有多少人?24.光華農機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農機租賃公司商定的每天的租賃價格見表:每臺甲型收割機的租金每臺乙型收割機的租金A地區(qū)18001600B地區(qū)16001200(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數(shù)關系式,并寫出x的取值范圍;(2)若使農機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79600元,說明有多少種分配方案,并將各種方案設計出來;(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農機租賃公司提一條合理化建議.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據(jù)知求出CG的長是解題的關鍵.2、A【解析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關于AC對稱,則BE交于AC的點是P點,此時PD+PE最小,∵在AC上取任何一點(如Q點),QD+QE都大于PD+PE(BE),∴此時PD+PE最小,此時PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【點睛】本題考查了正方形的性質,等邊三角形的性質,軸對稱-最短路線問題等知識點的應用,關鍵是找出PD+PE最小時P點的位置.3、C【解析】
根據(jù)頂點式y(tǒng)=a(x-h)2+k的對稱軸是直線x=h,找出h即可得出答案.【詳解】解:二次函數(shù)y=x2的對稱軸為y軸.
故選:C.【點睛】本題考查二次函數(shù)的性質,解題關鍵是頂點式y(tǒng)=a(x-h)2+k的對稱軸是直線x=h,頂點坐標為(h,k).4、B【解析】
平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小。∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點睛】本題考查了平行四邊形的性質,解題的關鍵是利用三角形中位線定理進行求解.5、D.【解析】試題分析:A、原式=a6,不符合題意;B、原式=a2+2ab+b2,不符合題意;C、原式=1,不符合題意;D、原式=a6,符合題意,故選D考點:整式的混合運算6、C【解析】分析:細心觀察圖中幾何體中正方體擺放的位置,根據(jù)左視圖是從左面看到的圖形判定則可.詳解:從左邊看豎直疊放2個正方形.故選:C.點睛:此題考查了幾何體的三種視圖和學生的空間想象能力,左視圖是從物體左面看所得到的圖形,解答時學生易將三種視圖混淆而錯誤的選其它選項.7、D【解析】
判斷出P的橫縱坐標的符號,即可判斷出點P所在的相應象限.【詳解】當a為正數(shù)的時候,a+3一定為正數(shù),所以點P可能在第一象限,一定不在第四象限,
當a為負數(shù)的時候,a+3可能為正數(shù),也可能為負數(shù),所以點P可能在第二象限,也可能在第三象限,
故選D.【點睛】本題考查了點的坐標的知識點,解題的關鍵是由a的取值判斷出相應的象限.8、C【解析】
用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】32400000=3.24×107元.
故選C.【點睛】此題主要考查了用科學記數(shù)法表示較大的數(shù),一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關鍵.9、A【解析】
根據(jù)圓內接四邊形的任意一個外角等于它的內對角求出∠A,根據(jù)圓周角定理計算即可.【詳解】四邊形ABCE內接于⊙O,,由圓周角定理可得,,故選:A.【點睛】本題考查的知識點是圓的內接四邊形性質,解題關鍵是熟記圓內接四邊形的任意一個外角等于它的內對角(就是和它相鄰的內角的對角).10、D【解析】分析:根據(jù)增長率為12%,7%,可表示出2017年的國內生產總值,2018年的國內生產總值;求2年的增長率,可用2016年的國內生產總值表示出2018年的國內生產總值,讓2018年的國內生產總值相等即可求得所列方程.詳解:設2016年的國內生產總值為1,∵2017年國內生產總值(GDP)比2016年增長了12%,∴2017年的國內生產總值為1+12%;∵2018年比2017年增長7%,∴2018年的國內生產總值為(1+12%)(1+7%),∵這兩年GDP年平均增長率為x%,∴2018年的國內生產總值也可表示為:,∴可列方程為:(1+12%)(1+7%)=.故選D.點睛:考查了由實際問題列一元二次方程的知識,當必須的量沒有時,應設其為1;注意2018年的國內生產總值是在2017年的國內生產總值的基礎上增加的,需先算出2016年的國內生產總值.二、填空題(本大題共6個小題,每小題3分,共18分)11、x(3x+1)(3x﹣1)【解析】
提取公因式分解多項式,再根據(jù)平方差公式分解因式,從而得到答案.【詳解】9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案為x(3x+1)(3x-1).【點睛】本題主要考查了因式分解以及平方差公式,解本題的要點在于熟知多項式分解因式的相關方法.12、1【解析】
設反比例函數(shù)解析式為y=,根據(jù)反比例函數(shù)圖象上點的坐標特征得到k=3×(﹣4)=﹣2m,然后解關于m的方程即可.【詳解】解:設反比例函數(shù)解析式為y=,根據(jù)題意得k=3×(﹣4)=﹣2m,解得m=1.故答案為1.考點:反比例函數(shù)圖象上點的坐標特征.13、4x=5(x-4)【解析】按照面積作為等量關系列方程有4x=5(x﹣4).14、1.【解析】
由CD⊥AB,根據(jù)垂徑定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理計算出OD,則通過CD=OC?OD求出CD.【詳解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半徑OA=10m,∴OD==6,∴CD=OC﹣OD=10﹣6=1(m).故答案為1.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的?。部疾榱饲芯€的性質定理以及勾股定理.15、5【解析】由題意得,,.∴原式16、9.26×1011【解析】試題解析:9260億=9.26×1011故答案為:9.26×1011點睛:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于1時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).三、解答題(共8題,共72分)17、(1);(1)11.【解析】
(1)根據(jù)正切的定義求出OA,證明△BAO∽△BEC,根據(jù)相似三角形的性質計算;(1)求出直線AB的解析式,解方程組求出點D的坐標,根據(jù)三角形CDE的面積=三角形CBE的面積+三角形BED的面積計算即可.【詳解】解:(1)∵tan∠ABO=,OB=4,∴OA=1,∵OE=1,∴BE=6,∵AO∥CE,∴△BAO∽△BEC,∴=,即=,解得,CE=3,即點C的坐標為(﹣1,3),∴反比例函數(shù)的解析式為:;(1)設直線AB的解析式為:y=kx+b,則,解得,,則直線AB的解析式為:,,解得,,,∴當D的坐標為(6,1),∴三角形CDE的面積=三角形CBE的面積+三角形BED的面積=×6×3+×6×1=11.【點睛】此題考查的是反比例函數(shù)與一次函數(shù)的交點問題,掌握待定系數(shù)法求函數(shù)解析式的一般步驟、求反比例函數(shù)與一次函數(shù)的交點的方法是解題的關鍵.18、(1)AP=2t,AQ=16﹣3t;(2)運動時間為秒或1秒.【解析】
(1)根據(jù)路程=速度時間,即可表示出AP,AQ的長度.(2)此題應分兩種情況討論.(1)當△APQ∽△ABC時;(2)當△APQ∽△ACB時.利用相似三角形的性質求解即可.【詳解】(1)AP=2t,AQ=16﹣3t.(2)∵∠PAQ=∠BAC,∴當時,△APQ∽△ABC,即,解得當時,△APQ∽△ACB,即,解得t=1.∴運動時間為秒或1秒.【點睛】考查相似三角形的判定與性質,掌握相似三角形的判定定理與性質定理是解題的關鍵.注意不要漏解.19、(1)a=6,b=8;(2);(3)A團有20人,B團有30人.【解析】
(1)根據(jù)函數(shù)圖像,用購票款數(shù)除以定價的款數(shù),計算即可求得a的值;用11人到20人的購票款數(shù)除以定價的款數(shù),計算即可解得b的值;(2)分0≤x≤10與x>10,利用待定系數(shù)法確定函數(shù)關系式求得y2的函數(shù)關系式即可;(3)設A團有n人,表示出B團的人數(shù)為(50-n),然后分0≤x≤10與x>10兩種情況,根據(jù)(2)中的函數(shù)關系式列出方程求解即可.【詳解】(1)由y1圖像上點(10,480),得到10人的費用為480元,∴a=;由y2圖像上點(10,480)和(20,1440),得到20人中后10人的費用為640元,∴b=;(2)0≤x≤10時,設y2=k2x,把(10,800)代入得10k2=800,解得k2=80,∴y2=80x,x>10,設y2=kx+b,把(10,800)和(20,1440)代入得解得∴y2=64x+160∴(3)設B團有n人,則A團的人數(shù)為(50-n)當0≤n≤10時80n+48(50-n)=3040,解得n=20(不符合題意舍去)當n>10時,解得n=30.則50-n=20人,則A團有20人,B團有30人.【點睛】此題主要考查一次函數(shù)的綜合運用,解題的關鍵是熟知待定系數(shù)法確定函數(shù)關系式.20、(1)y=(2)點B(1,6)在這個反比例函數(shù)的圖象上【解析】
(1)設反比例函數(shù)的解析式是y=,只需把已知點的坐標代入,即可求得函數(shù)解析式;(2)根據(jù)反比例函數(shù)圖象上點的坐標特征進行判斷.【詳解】設反比例函數(shù)的解析式是,則,得.則這個函數(shù)的表達式是;因為,所以點不在函數(shù)圖象上.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式:設出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對應值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)圖象上點的坐標特征.21、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】
(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質得到PB=CD,∠ACD=∠B=45°,于是得到根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質得到,得到ABP∽△CAD,根據(jù)相似三角形的性質得到結論;過A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據(jù)勾股定理得到根據(jù)相似三角形的性質得到,推出△ABP∽△CAD,根據(jù)相似三角形的性質即可得到結論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【點睛】本題考查了等腰直角三角形的性質,全等三角形的判定和性質,相似三角形的判定和性質,勾股定理,熟練掌握相似三角形的判定和性質是解題的關鍵.22、,【解析】分析:先把分值分母因式分解后約分,再進行通分得到原式=,然后把x的值代入計算即可.詳解:原式=?﹣1=﹣=當x=+1時,原式==.點睛:本題考查了分式的化簡求值:先把分式化簡后,再把分式中未知數(shù)對應的值代入求出分式的值.23、(1)8,20,2.0≤x<2.4;(2)補圖見解析;(3)該年級學生立定跳遠成績在2.4≤x<2.8范圍內的學生有200人.【解析】【分析】(1)根據(jù)題意和統(tǒng)計圖可以求得a、b的值,并得到樣本成績的中位數(shù)所在的取值范圍;(2)根據(jù)b的值可以將頻數(shù)分布直方圖補充完整;(3)用1000乘以樣本中該年級學生立定跳遠成績在2.4≤x<2.8范圍內的學生比例即可得.【詳解】(1)由統(tǒng)計圖可得,a=8,b=50﹣8﹣12﹣10=20,樣本成績的中位數(shù)落在:2.0≤x<2.4范圍內,故答案為:8,20,2.0≤x<2.4;(2)由(1)知,b=20,補全的頻數(shù)分布直方圖如圖所示;(3)1000×=200(人),答:該年級學生立定跳遠成績在2.4≤x<2.8范圍內的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度水泥行業(yè)市場調研與分析服務合同-@-1
- 2025年度新能源汽車銷售雇傭合同范本
- 解除承包合同申請書
- 人教版五年級上冊數(shù)學第四單元測試卷及答案共4套
- 免責車位出租合同范例
- 冷庫勞務培訓合同范例
- 2025年度農產品銷售承包合同范本
- 2025年度房地產項目合作開發(fā)合同范本
- 生物醫(yī)藥行業(yè)知識產權保護與投資風險
- 2019-2025年中國雙面印制電路板行業(yè)市場調研分析及投資戰(zhàn)略咨詢報告
- 統(tǒng)編版小學語文五年級下冊第四單元解讀與大單元設計思路
- 貓狗創(chuàng)業(yè)計劃書
- 復產復工試題含答案
- 湖南省長沙市2023-2024學年八年級下學期入學考試英語試卷(附答案)
- 部編版語文三年級下冊第六單元大單元整體作業(yè)設計
- 售后服務經理的競聘演講
- 臨床醫(yī)技科室年度運營發(fā)展報告
- 慢加急性肝衰竭護理查房課件
- 文件丟失應急預案
- 從建設和諧社會角度思考治超限載(十)
- 幼兒園小班開學家長會課件
評論
0/150
提交評論