上海市楊浦區(qū)控江中學2023-2024學年高一數(shù)學第二學期期末質量檢測試題含解析_第1頁
上海市楊浦區(qū)控江中學2023-2024學年高一數(shù)學第二學期期末質量檢測試題含解析_第2頁
上海市楊浦區(qū)控江中學2023-2024學年高一數(shù)學第二學期期末質量檢測試題含解析_第3頁
上海市楊浦區(qū)控江中學2023-2024學年高一數(shù)學第二學期期末質量檢測試題含解析_第4頁
上海市楊浦區(qū)控江中學2023-2024學年高一數(shù)學第二學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市楊浦區(qū)控江中學2023-2024學年高一數(shù)學第二學期期末質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知為第Ⅱ象限角,則的值為()A. B. C. D.2.集合,則()A. B. C. D.3.若,則下列結論正確的是()A.若,則 B.若,則C.若,則 D.若,則4.在天氣預報中,有“降水概率預報”,例如預報“明天降水的概率為”,這是指()A.明天該地區(qū)有的地方降水,有的地方不降水B.明天該地區(qū)有的時間降水,其他時間不降水C.明天該地區(qū)降水的可能性為D.氣象臺的專家中有的人認為會降水,另外有的專家認為不降水5.在中任取一實數(shù)作為x,則使得不等式成立的概率為()A. B. C. D.6.已知直線與平行,則等于()A.或 B.或 C. D.7.設,則下列不等式中正確的是()A. B.C. D.8.設是上的偶函數(shù),且在上是減函數(shù),若且,則()A. B.C. D.與大小不確定9.在中,內角所對的邊分別是,若,則角的值為()A. B. C. D.10.若是等差數(shù)列,則下列數(shù)列中也成等差數(shù)列的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.英國物理學家和數(shù)學家艾薩克·牛頓(Isaacnewton,1643-1727年)曾提出了物體在常溫環(huán)境下溫度變化的冷卻模型.現(xiàn)把一杯溫水放在空氣中冷卻,假設這杯水從開始冷卻,x分鐘后物體的溫度滿足:(其中…為自然對數(shù)的底數(shù)).則從開始冷卻,經過5分鐘時間這杯水的溫度是________(單位:℃).12.過點作圓的兩條切線,切點分別為,則=.13.計算:______.14.若,則__________.15.已知等比數(shù)列{an}為遞增數(shù)列,且,則數(shù)列{an}的通項公式an=______________.16.從甲、乙、丙等5名候選學生中選2名作為青年志愿者,則甲、乙、丙中有2個被選中的概率為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,,且,.(1)求函數(shù)和的解析式;(2)求函數(shù)的遞增區(qū)間;(3)若函數(shù)的最小值為,求λ值.18.眉山市位于四川西南,有“千載詩書城,人文第一州”的美譽,這里是大文豪蘇軾、蘇洵、蘇轍的故鄉(xiāng),也是人們旅游的好地方.在今年的國慶黃金周,為了豐富游客的文化生活,每天在東坡故里三蘇祠舉行“三蘇文化”知識競賽.已知甲、乙兩隊參賽,每隊3人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分.假設甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為,,,且各人回答正確與否相互之間沒有影響.(1)分別求甲隊總得分為0分;2分的概率;(2)求甲隊得2分乙隊得1分的概率.19.已知函數(shù)(1)求的最小正周期;(2)求的單調增區(qū)間;(3)若求函數(shù)的值域.20.已知在三棱錐S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求證:AD⊥平面SBC.21.已知函數(shù)的最小正周期為,(1)求函數(shù)的單調遞減區(qū)間;(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【詳解】因為,所以或,又為第Ⅱ象限角,故,.因為為第Ⅱ象限角即,所以,,即為第Ⅰ,Ⅲ象限角.由于,解得,故選B.【點睛】本題主要考查二倍角公式的應用以及象限角的集合應用.2、C【解析】

先求解不等式化簡集合A和B,再根據(jù)集合的交集運算求得結果即可.【詳解】因為集合,集合或,所以.故本題正確答案為C.【點睛】本題考查一元二次不等式,分式不等式的解法和集合的交集運算,注意認真計算,仔細檢查,屬基礎題.3、D【解析】

根據(jù)不等式的基本性質逐一判斷可得答案.【詳解】解:A.當時,不成立,故A不正確;B.取,,則結論不成立,故B不正確;C.當時,結論不成立,故C不正確;D.若,則,故D正確.故選:D.【點睛】本題主要考查不等式的基本性質,屬于基礎題.4、C【解析】

預報“明天降水的概率為”,屬于隨機事件,可能下雨,也可能不下雨,即可得到答案.【詳解】由題意,天氣預報中,有“降水概率預報”,例如預報“明天降水的概率為”,這是指明天下雨的可能性是,故選C.【點睛】本題主要考查了隨機事件的概念及其概率,其中正確理解隨機事件的概率的概念是解答此類問題的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.5、C【解析】

先求解不等式,再利用長度型的幾何概型概率公式求解即可【詳解】由題,因為,解得,則,故選:C【點睛】本題考查長度型的幾何概型,考查解對數(shù)不等式6、C【解析】

由題意可知且,解得.故選.7、B【解析】

取,則,,只有B符合.故選B.考點:基本不等式.8、A【解析】試題分析:由是上的偶函數(shù),且在上是減函數(shù),所以在上是增函數(shù),因為且,所以,所以,又因為,所以,故選A.考點:函數(shù)奇偶性與單調性的綜合應用.【方法點晴】本題主要考查了函數(shù)的單調性與奇偶性的綜合應用,其中解答中涉及函數(shù)的單調性和函數(shù)奇偶性的應用等知識點,本題的解答中先利用偶函數(shù)的圖象的對稱性得出在上是增函數(shù),然后在利用題設條案件把自變量轉化到區(qū)間上是解答的關鍵,著重考查了學生分析問題和解答問題的能力,以及轉化與化歸思想的應用,試題有一定的難度,屬于中檔試題.9、C【解析】

利用正弦定理,求得,再利用余弦定理,求得,即可求解.【詳解】在,因為,由正弦定理可化簡得,即,由余弦定理得,因為,所以,故選C.【點睛】本題主要考查了正弦定理、余弦定理的應用,其中在解有關三角形的題目時,要有意識地考慮用哪個定理更合適,要抓住能夠利用某個定理的信息.一般地,如果式子中含有角的余弦或邊的二次式時,要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時,則考慮用正弦定理,著重考查了運算與求解能力,屬于基礎題.10、C【解析】

根據(jù)等差數(shù)列的定義,只需任意相鄰的后一項與前一項的差為定值即可.【詳解】A:=(an+an+1)(an+1﹣an)=d[2a1+(2n﹣1)d],與n有關系,因此不是等差數(shù)列.B:==與n有關系,因此不是等差數(shù)列.C:3an+1﹣3an=3(an+1﹣an)=3d為常數(shù),仍然為等差數(shù)列;D:當數(shù)列{an}的首項為正數(shù)、公差為負數(shù)時,{|an|}不是等差數(shù)列;故選:C【點睛】本題考查了等差數(shù)列的定義及其通項公式,考查了推理能力與計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、45【解析】

直接利用對數(shù)的運算性質計算即可,【詳解】.故答案為:45.【點睛】本題考查對數(shù)的運算性質,考查計算能力,屬于基礎題.12、【解析】

如圖,連接,在直角三角形中,所以,,,故.考點:1.直線與圓的位置關系;2.平面向量的數(shù)量積.13、【解析】

在分式的分子和分母中同時除以,然后利用常見的數(shù)列極限可計算出所求極限值.【詳解】.故答案為:.【點睛】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列極限是解題的關鍵,考查計算能力,屬于基礎題.14、;【解析】

易知的周期為,從而化簡求得.【詳解】的周期為,且,又,.故答案為:【點睛】本題考查了正弦型函數(shù)的周期以及利用周期求函數(shù)值,屬于基礎題.15、【解析】設數(shù)列的首項為,公比為q,則,所以,由得解得,因為數(shù)列為遞增數(shù)列,所以,,所以考點定位:本題考查等比數(shù)列,意在考查考生對等比數(shù)列的通項公式的應用能力16、【解析】因為從5名候選學生中任選2名學生的方法共有10種,而甲、乙、丙中有2個被選中的方法有3種,所以甲、乙、丙中有2個被選中的概率為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)遞增區(qū)間為,(3)【解析】

(1)根據(jù)向量的數(shù)量積坐標運算,以及模長的求解公式,即可求得兩個函數(shù)的解析式;(2)由(1)可得,整理化簡后,將其轉化為余弦型三角函數(shù),再求單調區(qū)間即可;(3)求得的解析式,用換元法,將函數(shù)轉化為二次函數(shù),討論二次函數(shù)的最小值,從而求得參數(shù)的值.【詳解】(1),.(2)令,得的遞增區(qū)間為,.(3)∵,∴..當時,時,取最小值為-1,這與題設矛盾.當時,時,取最小值,因此,,解得.當時,時,取最小值,由,解得,與題設矛盾.綜上所述,.【點睛】本題主要考查余弦型三角函數(shù)的單調區(qū)間的求解,含的二次型函數(shù)的最值問題,涉及向量數(shù)量積的運算,模長的求解,以及二次函數(shù)動軸定區(qū)間問題,屬綜合基礎題.18、(1)0分概率;2分概率;(2)【解析】

(1)記“甲隊總得分為0分”為事件,“甲隊總得分為2分”為事件,分析可知A事件三人都沒有答對,按相互獨立事件同時發(fā)生計算概率,B事件即甲隊三人中有1人答錯,其余兩人答對,由n次獨立事件恰有k次發(fā)生計算即可(2)記“乙隊得1分”為事件,“甲隊得2分乙隊得1分”為事件,分別有互斥事件概率加法公式及相互獨立事件乘法公式計算即可.【詳解】(1)記“甲隊總得分為0分”為事件,“甲隊總得分為2分”為事件,甲隊總得分為0分,即甲隊三人都回答錯誤,其概率;甲隊總得分為2分,即甲隊三人中有1人答錯,其余兩人答對,其概率;(2)記“乙隊得1分”為事件,“甲隊得2分乙隊得1分”為事件;事件即乙隊三人中有2人答錯,其余1人答對,則,甲隊得2分乙隊得1分即事件、同時發(fā)生,則.【點睛】本題主要考查了相互獨立事件的概率計算,涉及n次獨立事件中恰有k次發(fā)生的概率公式的應用,互斥事件的概率加法公式,屬于中檔題.19、(1)(2);(3).【解析】

(1)先化簡函數(shù)f(x)的解析式,再求函數(shù)的最小正周期;(2)解不等式,即得函數(shù)的增區(qū)間;(3)根據(jù)三角函數(shù)的性質求函數(shù)的值域.【詳解】(1)由題得,所以函數(shù)的最小正周期為.(2)令,所以,所以函數(shù)的單調增區(qū)間為.(3),所以函數(shù)的值域為.【點睛】本題主要考查三角恒等變換,考查三角函數(shù)的圖像和性質,考查三角函數(shù)的值域,意在考查學生對這些知識的理解掌握水平,屬于基礎題.20、證明見解析【解析】

先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【詳解】證明:因為SA⊥面ABC,BC面ABC,所以BC⊥SA;又由∠ACB=,得BC⊥AC,且AC、SA是面SAC內的兩相交線,所以BC⊥面SAC;又AD面SAC,所以BC⊥AD,又已知SC⊥AD,且BC、SC是面SBC內兩相交線,所以AD⊥面SBC.【點睛】本題考查了線面垂直的證明與性質,屬于基礎題.21、(1)的單調遞減區(qū)間為(2)【解析】

(1)由二倍角公式和兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后得正弦函數(shù)的單調性求得減區(qū)間;(2)函數(shù)在區(qū)間上有兩個零點可轉化為函數(shù)與的圖像有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論