黑龍江省大慶大慶二中、二十三中、二十八中、十中2024年高一下數(shù)學期末質量檢測試題含解析_第1頁
黑龍江省大慶大慶二中、二十三中、二十八中、十中2024年高一下數(shù)學期末質量檢測試題含解析_第2頁
黑龍江省大慶大慶二中、二十三中、二十八中、十中2024年高一下數(shù)學期末質量檢測試題含解析_第3頁
黑龍江省大慶大慶二中、二十三中、二十八中、十中2024年高一下數(shù)學期末質量檢測試題含解析_第4頁
黑龍江省大慶大慶二中、二十三中、二十八中、十中2024年高一下數(shù)學期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省大慶大慶二中、二十三中、二十八中、十中2024年高一下數(shù)學期末質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知、是圓:上的兩個動點,,,若是線段的中點,則的值為()A. B. C. D.2.若實數(shù)x,y滿足x2y2A.4,8 B.8,+3.已知函數(shù)的最大值為,最小值為,則的值為()A. B. C. D.4.已知數(shù)列的前項和為,且,則()A. B. C. D.5.下列函數(shù)中是偶函數(shù)且最小正周期為的是()A. B.C. D.6.有一個容量為200的樣本,樣本數(shù)據(jù)分組為,,,,,其頻率分布直方圖如圖所示.根據(jù)樣本的頻率分布直方圖估計樣本數(shù)據(jù)落在區(qū)間內(nèi)的頻數(shù)為()A.48 B.60 C.64 D.727.不等式的解集是:A. B.C. D.8.在直角中,,線段上有一點,線段上有一點,且,若,則()A.1 B. C. D.9.在中,,,,點P是內(nèi)(包括邊界)的一動點,且(),則的最大值為()A.6 B. C. D.610.已知數(shù)列,如果,,,……,,……,是首項為1,公比為的等比數(shù)列,則=A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,則在方向上的投影為______.12.已知(),則________.(用表示)13.某海域中有一個小島(如圖所示),其周圍3.8海里內(nèi)布滿暗礁(3.8海里及以外無暗礁),一大型漁船從該海域的處出發(fā)由西向東直線航行,在處望見小島位于北偏東75°,漁船繼續(xù)航行8海里到達處,此時望見小島位于北偏東60°,若漁船不改變航向繼續(xù)前進,試問漁船有沒有觸礁的危險?答:______.(填寫“有”、“無”、“無法判斷”三者之一)14.P是棱長為4的正方體的棱的中點,沿正方體表面從點A到點P的最短路程是_______.15.經(jīng)過點,且在兩坐標軸上的截距之和為2的直線的一般式方程為________.16.已知均為正數(shù),則的最大值為______________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.數(shù)列的前項和.(1)求的通項公式;(2)設,求數(shù)列的前項和,并求使成立的實數(shù)最小值.18.已知向量,,,.(1)若,且,求x的值;(2)對于,,定義.解不等式;(3)若存在,使得,求k的取值范圍.19.已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)若,設數(shù)列的前n項和為,證明.20.設是兩個相互垂直的單位向量,且(Ⅰ)若,求的值;(Ⅱ)若,求的值.21.設平面三點、、.(1)試求向量的模;(2)若向量與的夾角為,求;(3)求向量在上的投影.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題意得,所以,選A.2、A【解析】

利用基本不等式得x2y2【詳解】∵x2y2≤(x2+y2)24∴x2故選A.【點睛】本題考查基本不等式求最值問題,解題關鍵是掌握基本不等式的變形應用:ab≤(a+b)3、B【解析】由解得為函數(shù)的定義域.令,消去得,圖像為橢圓的一部分,如下圖所示.,即直線,由圖可知,截距在點處取得最小值,在與橢圓相切的點處取得最大值.而,故最小值為.聯(lián)立,消去得,其判別式為零,即,解得(負根舍去),即,故.【點睛】本題主要考查含有兩個根號的函數(shù)怎樣求最大值和最小值.先用換元法,將原函數(shù)改寫成為一次函數(shù)的形式.然后利用和的關系,得到的可行域,本題中可行域為橢圓在第一象限的部分.然后利用,用截距的最大值和最小值來求函數(shù)的最大值和最小值.4、D【解析】

通過和關系,計算通項公式,再計算,代入數(shù)據(jù)得到答案.【詳解】,取,兩式相減得:是首項為4,公比為2的等比數(shù)列.故答案選D【點睛】本題考查了等比數(shù)列的通項公式,前N項和,意在考查學生的計算能力.5、A【解析】

本題首先可將四個選項都轉化為的形式,然后對四個選項的奇偶性以及周期性依次進行判斷,即可得出結果.【詳解】中,函數(shù),是偶函數(shù),周期為;中,函數(shù)是奇函數(shù),周期;中,函數(shù),是非奇非偶函數(shù),周期;中,函數(shù)是偶函數(shù),周期.綜上所述,故選A.【點睛】本題考查對三角函數(shù)的奇偶性以及周期性的判斷,考查三角恒等變換,偶函數(shù)滿足,對于函數(shù),其最小正周期為,考查化歸與轉化思想,是中檔題.6、B【解析】

由,求出,計算出數(shù)據(jù)落在區(qū)間內(nèi)的頻率,即可求解.【詳解】由,解得,所以數(shù)據(jù)落在區(qū)間內(nèi)的頻率為,所以數(shù)據(jù)落在區(qū)間內(nèi)的頻數(shù),故選B.【點睛】本題主要考查了頻率分布直方圖,頻率、頻數(shù),屬于中檔題.7、C【解析】

把不等式轉化為不等式,即可求解,得到答案.【詳解】由題意,不等式,等價于,解得,即不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的求解,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8、D【解析】

依照題意采用解析法,建系求出目標向量坐標,用數(shù)量積的坐標表示即可求出結果.【詳解】如圖,以A為原點,AC,AB所在直線分別為軸建系,依題設A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故選D.【點睛】本題主要考查解析法在向量中的應用,意在考查學生數(shù)形結合的能力.9、B【解析】

利用余弦定理和勾股定理可證得;取,作,根據(jù)平面向量平行四邊形法則可知點軌跡為線段,由此可確定,利用勾股定理可求得結果.【詳解】由余弦定理得:如圖,取,作,交于在內(nèi)(包含邊界)點軌跡為線段當與重合時,最大,即故選:【點睛】本題考查向量模長最值的求解問題,涉及到余弦定理解三角形的應用;解題關鍵是能夠根據(jù)平面向量線性運算確定動點軌跡,根據(jù)軌跡確定最值點.10、A【解析】分析:累加法求解。詳解:,,解得點睛:形如的模型,求通項公式,用累加法。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由平面向量投影的定義可得出在方向上的投影為,從而可計算出結果.【詳解】設平面向量與的夾角為,則在方向上的投影為.故答案為:.【點睛】本題考查平面向量投影的計算,熟悉平面向量投影的定義是解題的關鍵,考查計算能力,屬于基礎題.12、【解析】

根據(jù)同角三角函數(shù)之間的關系,結合角所在的象限,即可求解.【詳解】因為,所以,故,解得,又,,所以.故填.【點睛】本題主要考查了同角三角函數(shù)之間的關系,三角函數(shù)在各象限的符號,屬于中檔題.13、無【解析】

可過作的延長線的垂線,垂足為,結合角度關系可判斷為等腰三角形,再通過的邊角關系即可求解,判斷與3.8的大小關系即可【詳解】如圖,過作的延長線的垂線,垂足為,在中,,,則,所以為等腰三角形。,又,所以,,所以漁船沒有觸礁的危險故答案為:無【點睛】本題考查三角函數(shù)在生活中的實際應用,屬于基礎題14、【解析】

從圖形可以看出圖形的展開方式有二,一是以底棱BC,CD為軸,可以看到此兩種方式是對稱的,所得結果一樣,另外一種是以側棱為軸展開,即以BB1,DD1為軸展開,此兩種方式對稱,求得結果一樣,故解題時選擇以BC為軸展開與BB1為軸展開兩種方式驗證即可【詳解】由題意,若以BC為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為4,6,故兩點之間的距離是若以BB1為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為2,8,故兩點之間的距離是故沿正方體表面從點A到點P的最短路程是cm故答案為【點睛】本題考查多面體和旋轉體表面上的最短距離問題,求解的關鍵是能夠根據(jù)題意把求幾何體表面上兩點距離問題轉移到平面中來求15、【解析】

由題可知,直線在x上軸截距為-3,再利用截距式可直接求得直線方程【詳解】∵直線過(0,5),∴直線在y軸上的截距為5,又直線在兩坐標軸上的截距之和為2,∴直線在x軸上的截距為2-5=-3∴直線方程為,即5x-3y+15=0【點睛】直線方程有五種基本形式,在只知道橫縱截距的情況下,截距式是最快捷的一種方式16、【解析】

根據(jù)分子和分母的特點把變形為,運用重要不等式,可以求出的最大值.【詳解】(當且僅當且時取等號),(當且僅當且時取等號),因此的最大值為.【點睛】本題考查了重要不等式,把變形為是解題的關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】

(1)由已知可先求得首項,然后由,得,兩式相減后可得數(shù)列的遞推式,結合得數(shù)列是等比數(shù)列,從而易得通項公式;(2)對數(shù)列可用錯位相減法求其和.不等式恒成立,可轉化為先求的最大值.【詳解】(1)由得.由,可知,可得,即.因為,所以,故因此是首項為,公比為的等比數(shù)列,故.(2)由(1)知.所以①兩邊同乘以得②①②相減得從而于是,當是奇數(shù)時,,因為,所以.當是偶數(shù)時,因此.因為,所以,的最小值為.【點睛】本題考查等比數(shù)列的通項公式,前項和公式,考查錯位相減法求和.適用錯位相減法求和的數(shù)列一般是,其中是等差數(shù)列,是等比數(shù)列.18、(1)或(2)(3)【解析】

(1)由題,由可得,進而求解即可;(2)由題意得到,進而求解即可;(3)由可得,整理可得關于的函數(shù),進而求解即可【詳解】(1)由題,,因為,所以,則,因為,所以或(2)由題,,因為,所以,當時,,因為是以為最小正周期的周期函數(shù),所以(3)由(1),由題,,若,則,則,因為,所以【點睛】本題考查共線向量的坐標表示,考查垂直向量的坐標表示,考查解三角函數(shù)的不等式19、(1);(2)見解析.【解析】【試題分析】(1)借助題設中的數(shù)列遞推式探求數(shù)列通項之間的關系,再運用等比數(shù)列的定義求得通項公式;(2)依據(jù)(1)的結論運用錯位相減法求解,再借助簡單縮放法推證:(1)當時,得,當時,得,所以,(2)由(1)得:,又①得②兩式相減得:,故,所以.點睛:解答本題的思路是充分借助題設條件,先探求數(shù)列的的通項公式,再運用錯位相減法求解前項和.解答第一問時,先借助題設中的數(shù)列遞推式探求數(shù)列通項之間的關系,再運用等比數(shù)列的定義求得通項公式;解答第二問時,先依據(jù)(1)中的結論求得,運用錯位相減求和法求得,使得問題獲解.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ),則存在唯一的使,解得所求參數(shù)的值;(Ⅱ)若,則,解得所求參數(shù)的值.【詳解】解:(Ⅰ)若,則存在唯一的,使,,當時,;(Ⅱ)若,則,因為是兩個相互垂直的單位向量,當時,.【點睛】本題考查兩個向量平行、垂直的性質,兩個向量的數(shù)量積公式的應用.21、(1);(2);(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論