北京市北京大附屬中學2024年中考適應性考試數(shù)學試題含解析_第1頁
北京市北京大附屬中學2024年中考適應性考試數(shù)學試題含解析_第2頁
北京市北京大附屬中學2024年中考適應性考試數(shù)學試題含解析_第3頁
北京市北京大附屬中學2024年中考適應性考試數(shù)學試題含解析_第4頁
北京市北京大附屬中學2024年中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市北京大附屬中學2024年中考適應性考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚2.過正方體中有公共頂點的三條棱的中點切出一個平面,形成如圖幾何體,其正確展開圖正確的為()A. B. C. D.3.若代數(shù)式2x2+3x﹣1的值為1,則代數(shù)式4x2+6x﹣1的值為()A.﹣3 B.﹣1 C.1 D.34.如圖,在?ABCD中,對角線AC的垂直平分線分別交AD、BC于點E、F,連接CE,若△CED的周長為6,則?ABCD的周長為()A.6 B.12 C.18 D.245.點M(1,2)關于y軸對稱點的坐標為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)6.某班組織了針對全班同學關于“你最喜歡的一項體育活動”的問卷調查后,繪制出頻數(shù)分布直方圖,由圖可知,下列結論正確的是()A.最喜歡籃球的人數(shù)最多 B.最喜歡羽毛球的人數(shù)是最喜歡乒乓球人數(shù)的兩倍C.全班共有50名學生 D.最喜歡田徑的人數(shù)占總人數(shù)的10%7.如圖,點M為?ABCD的邊AB上一動點,過點M作直線l垂直于AB,且直線l與?ABCD的另一邊交于點N.當點M從A→B勻速運動時,設點M的運動時間為t,△AMN的面積為S,能大致反映S與t函數(shù)關系的圖象是()A. B. C. D.8.在平面直角坐標系中,位于第二象限的點是()A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)9.在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結論正確的是()A.a(chǎn)<0,b<0,c>0B.﹣=1C.a(chǎn)+b+c<0D.關于x的方程ax2+bx+c=﹣1有兩個不相等的實數(shù)根10.甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=1.其中正確的是()A.①②③ B.僅有①② C.僅有①③ D.僅有②③二、填空題(本大題共6個小題,每小題3分,共18分)11.關于x的一元二次方程kx2﹣2x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是.12.如圖,如果四邊形ABCD中,AD=BC=6,點E、F、G分別是AB、BD、AC的中點,那么△EGF面積的最大值為_____.13.如圖,在Rt△ABC中,∠A=90°,∠ABC的平分線BD交AC于點D,DE是BC的垂直平分線,點E是垂足.若DC=2,AD=1,則BE的長為______.14.用一直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽可以制成一個不倒翁玩具,不倒翁的軸剖面圖如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽的表面全涂上顏色,則需要涂色部分的面積約為cm2(精確到1cm2).15.如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉一周.當△DCE一邊與AB平行時,∠ECB的度數(shù)為_________________________.16.若式子有意義,則x的取值范圍是.三、解答題(共8題,共72分)17.(8分)《九章算術》中有這樣一道題,原文如下:今有甲乙二人持錢不知其數(shù).甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?大意為:今有甲、乙二人,不知其錢包里有多少錢.若乙把其一半的錢給甲,則甲的錢數(shù)為;若甲把其的錢給乙,則乙的錢數(shù)也能為,問甲、乙各有多少錢?請解答上述問題.18.(8分)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠1.(1)若CE=1,求BC的長;(1)求證:AM=DF+ME.19.(8分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.20.(8分)先化簡再求值:÷(﹣1),其中x=.21.(8分)(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.22.(10分)先化簡,再在1,2,3中選取一個適當?shù)臄?shù)代入求值.23.(12分)如圖,矩形擺放在平面直角坐標系中,點在軸上,點在軸上,.(1)求直線的表達式;(2)若直線與矩形有公共點,求的取值范圍;(3)直線與矩形沒有公共點,直接寫出的取值范圍.24.先化簡,再求值:,其中a是方程a2+a﹣6=0的解.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.2、B【解析】試題解析:選項折疊后都不符合題意,只有選項折疊后兩個剪去三角形與另一個剪去的三角形交于一個頂點,與正方體三個剪去三角形交于一個頂點符合.故選B.3、D【解析】

由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1計算可得.【詳解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,則4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本題答案為:D.【點睛】本題主要考查代數(shù)式的求值,運用整體代入的思想是解題的關鍵.4、B【解析】∵四邊形ABCD是平行四邊形,∴DC=AB,AD=BC,∵AC的垂直平分線交AD于點E,∴AE=CE,∴△CDE的周長=DE+CE+DC=DE+AE+DC=AD+DC=6,∴?ABCD的周長=2×6=12,故選B.5、A【解析】

關于y軸對稱的點的坐標特征是縱坐標不變,橫坐標變?yōu)橄喾磾?shù).【詳解】點M(1,2)關于y軸對稱點的坐標為(-1,2)【點睛】本題考查關于坐標軸對稱的點的坐標特征,牢記關于坐標軸對稱的點的性質是解題的關鍵.6、C【解析】【分析】觀察直方圖,根據(jù)直方圖中提供的數(shù)據(jù)逐項進行分析即可得.【詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數(shù)最多,故A選項錯誤;B.最喜歡羽毛球的人數(shù)是最喜歡田徑人數(shù)的兩倍,故B選項錯誤;C.全班共有12+20+8+4+6=50名學生,故C選項正確;D.最喜歡田徑的人數(shù)占總人數(shù)的=8%,故D選項錯誤,故選C.【點睛】本題考查了頻數(shù)分布直方圖,從直方圖中得到必要的信息進行解題是關鍵.7、C【解析】分析:本題需要分兩種情況來進行計算得出函數(shù)解析式,即當點N和點D重合之前以及點M和點B重合之前,根據(jù)題意得出函數(shù)解析式.詳解:假設當∠A=45°時,AD=2,AB=4,則MN=t,當0≤t≤2時,AM=MN=t,則S=,為二次函數(shù);當2≤t≤4時,S=t,為一次函數(shù),故選C.點睛:本題主要考查的就是函數(shù)圖像的實際應用問題,屬于中等難度題型.解答這個問題的關鍵就是得出函數(shù)關系式.8、D【解析】

點在第二象限的條件是:橫坐標是負數(shù),縱坐標是正數(shù),直接得出答案即可.【詳解】根據(jù)第二象限的點的坐標的特征:橫坐標符號為負,縱坐標符號為正,各選項中只有C(﹣3,1)符合,故選:D.【點睛】本題考查點的坐標的性質,解題的關鍵是掌握點的坐標的性質.9、D【解析】試題分析:根據(jù)圖像可得:a<0,b>0,c<0,則A錯誤;,則B錯誤;當x=1時,y=0,即a+b+c=0,則C錯誤;當y=-1時有兩個交點,即有兩個不相等的實數(shù)根,則正確,故選D.10、A【解析】

解:∵乙出發(fā)時甲行了2秒,相距8m,∴甲的速度為8/2=4m/s.∵100秒時乙開始休息.∴乙的速度是500/100=5m/s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正確.∵100秒時乙到達終點,甲走了4×(100+2)=408m,∴b=500-408=92m.因此②正確.∵甲走到終點一共需耗時500/4=125s,,∴c=125-2=1s.因此③正確.終上所述,①②③結論皆正確.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、k<1且k≠1【解析】試題分析:根據(jù)一元二次方程的定義和△的意義得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范圍.解:∵關于x的一元二次方程kx2﹣2x+1=1有兩個不相等的實數(shù)根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范圍為k<1且k≠1.故答案為k<1且k≠1.考點:根的判別式;一元二次方程的定義.12、4.1.【解析】

取CD的值中點M,連接GM,F(xiàn)M.首先證明四邊形EFMG是菱形,推出當EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,由此可得結論.【詳解】解:取CD的值中點M,連接GM,F(xiàn)M.∵AG=CG,AE=EB,∴GE是△ABC的中位線∴EG=BC,同理可證:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四邊形EFMG是菱形,∴當EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,∴△EGF的面積的最大值為S四邊形EFMG=4.1,故答案為4.1.【點睛】本題主要考查菱形的判定和性質,利用了三角形中位線定理,掌握菱形的判定:四條邊都相等的四邊形是菱形是解題的關鍵.13、【解析】∵DE是BC的垂直平分線,∴DB=DC=2,∵BD是∠ABC的平分線,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE=,故答案為.點睛:本題考查的是線段的垂直平分線的性質、角平分線的性質,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.14、174cm1.【解析】直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=18?5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圓錐底面半徑=BD=,圓錐底面周長=1×π,側面面積=×1×π×11=.點睛:利用勾股定理可求得圓錐的母線長,進而過B作出垂線,得到圓錐的底面半徑,那么圓錐的側面積=底面周長×母線長÷1.本題是一道綜合題,考查的知識點較多,利用了勾股定理,圓的周長公式、圓的面積公式和扇形的面積公式求解.把實際問題轉化為數(shù)學問題求解是本題的解題關鍵.15、15°、30°、60°、120°、150°、165°【解析】分析:根據(jù)CD∥AB,CE∥AB和DE∥AB三種情況分別畫出圖形,然后根據(jù)每種情況分別進行計算得出答案,每種情況都會出現(xiàn)銳角和鈍角兩種情況.詳解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB時,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如圖1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB時,∠ECB=∠B=60°.③如圖2,DE∥AB時,延長CD交AB于F,則∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.點睛:本題主要考查的是平行線的性質與判定,屬于中等難度的題型.解決這個問題的關鍵就是根據(jù)題意得出圖形,然后分兩種情況得出角的度數(shù).16、且【解析】

∵式子在實數(shù)范圍內有意義,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案為x≥-1且x≠0.三、解答題(共8題,共72分)17、甲有錢,乙有錢.【解析】

設甲有錢x,乙有錢y,根據(jù)相等關系:甲的錢數(shù)+乙錢數(shù)的一半=50,甲的錢數(shù)的三分之二+乙的錢數(shù)=50列出二元一次方程組求解即可.【詳解】解:設甲有錢,乙有錢.由題意得:,解方程組得:,答:甲有錢,乙有錢.【點睛】本題考查了二元一次方程組的應用,讀懂題意正確的找出兩個相等關系是解決此題的關鍵.18、(1)1;(1)見解析.【解析】試題分析:(1)根據(jù)菱形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內錯角相等可得∠1=∠ACD,所以∠ACD=∠1,根據(jù)等角對等邊的性質可得CM=DM,再根據(jù)等腰三角形三線合一的性質可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;

(1)先利用“邊角邊”證明△CEM和△CFM全等,根據(jù)全等三角形對應邊相等可得ME=MF,延長AB交DF于點G,然后證明∠1=∠G,根據(jù)等角對等邊的性質可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據(jù)全等三角形對應邊相等可得GF=DF,最后結合圖形GM=GF+MF即可得證.試題解析:(1)∵四邊形ABCD是菱形,

∴AB∥CD,

∴∠1=∠ACD,

∵∠1=∠1,

∴∠ACD=∠1,

∴MC=MD,

∵ME⊥CD,

∴CD=1CE,

∵CE=1,

∴CD=1,

∴BC=CD=1;

(1)AM=DF+ME證明:如圖,∵F為邊BC的中點,

∴BF=CF=BC,

∴CF=CE,

在菱形ABCD中,AC平分∠BCD,

∴∠ACB=∠ACD,

在△CEM和△CFM中,

∵,

∴△CEM≌△CFM(SAS),

∴ME=MF,

延長AB交DF的延長線于點G,

∵AB∥CD,

∴∠G=∠1,

∵∠1=∠1,

∴∠1=∠G,

∴AM=MG,

在△CDF和△BGF中,

∵∴△CDF≌△BGF(AAS),

∴GF=DF,

由圖形可知,GM=GF+MF,

∴AM=DF+ME.19、(1)證明見解析;(2)證明見解析;(3)74.【解析】

(1)根據(jù)四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,F(xiàn)C=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據(jù)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,F(xiàn)C=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【點睛】本題主要考查了正方形的性質的應用,解此題的關鍵是能正確作出輔助線,綜合性比較強,有一定的難度.20、【解析】分析:根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.詳解:原式====當時,原式==.點睛:本題考查了分式的化簡求值,解答本題的關鍵是明確分式化簡求值的方法.21、(1)見解析;(2)62或3【解析】試題分析:(1)根據(jù)平行線的性質和中點的性質證明三角形全等,然后根據(jù)對角線互相平分的四邊形是平行四邊形完成證明;(2)由等腰三角形的性質,分三種情況:①BD=BC,②BD=CD,③BC=CD,分別求四邊形的面積.試題解析:(1)證明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是邊CD的中點∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四邊形BDFC是平行四邊形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=B∴四邊形BDFC的面積為S=22×3=62②若BD=DC過D作BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論