版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆江西省贛州市章貢區(qū)十校聯(lián)考最后數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列圖案中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.2.甲、乙兩人分別以4m/s和5m/s的速度,同時從100m直線型跑道的起點向同一方向起跑,設乙的奔跑時間為t(s),甲乙兩人的距離為S(m),則S關于t的函數(shù)圖象為()A. B. C. D.3.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為().A.50° B.40° C.30° D.25°4.若正比例函數(shù)y=3x的圖象經(jīng)過A(﹣2,y1),B(﹣1,y2)兩點,則y1與y2的大小關系為()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y25.如圖,某地修建高速公路,要從A地向B地修一條隧道(點A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機從A地出發(fā),垂直上升800米到達C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米6.在平面直角坐標系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(7.如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點D,則∠CBD的度數(shù)為()A.30° B.45° C.50° D.75°8.“趕陀螺”是一項深受人們喜愛的運動.如圖所示是一個陀螺的立體結構圖.已知底面圓的直徑AB=8cm,圓柱的高BC=6cm,圓錐的高CD=3cm,則這個陀螺的表面積是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm29.為迎接中考體育加試,小剛和小亮分別統(tǒng)計了自己最近10次跳繩比賽,下列統(tǒng)計量中能用來比較兩人成績穩(wěn)定程度的是()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差10.剪紙是水族的非物質文化遺產(chǎn)之一,下列剪紙作品是中心對稱圖形的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.PA、PB分別切⊙O于點A、B,∠PAB=60°,點C在⊙O上,則∠ACB的度數(shù)為_____.12.若正六邊形的邊長為2,則此正六邊形的邊心距為______.13.已知拋物線與直線在之間有且只有一個公共點,則的取值范圍是__.14.已知一次函數(shù)y=kx+2k+3的圖象與y軸的交點在y軸的正半軸上,且函數(shù)值y隨x的增大而減小,則k所能取到的整數(shù)值為________.15.如圖,正比例函數(shù)y=kx與反比例函數(shù)y=的圖象有一個交點A(2,m),AB⊥x軸于點B,平移直線y=kx使其經(jīng)過點B,得到直線l,則直線l對應的函數(shù)表達式是_________.16.已知扇形AOB的半徑OA=4,圓心角為90°,則扇形AOB的面積為_________.三、解答題(共8題,共72分)17.(8分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當點D在線段BC上時,證明BC=CE+CD.應用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當點D在線段CB的延長線上時,BC、CD、CE之間的數(shù)量關系為.(2)如圖③,當點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關系為.18.(8分)如圖,在平行四邊形ABCD中,E、F為AD上兩點,AE=EF=FD,連接BE、CF并延長,交于點G,GB=GC.(1)求證:四邊形ABCD是矩形;(1)若△GEF的面積為1.①求四邊形BCFE的面積;②四邊形ABCD的面積為.19.(8分)在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).求一次函數(shù)和反比例函數(shù)解析式.若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.根據(jù)圖象,直接寫出不等式的解集.20.(8分)計算:sin30°﹣+(π﹣4)0+|﹣|.21.(8分)根據(jù)圖中給出的信息,解答下列問題:放入一個小球水面升高,,放入一個大球水面升高;如果要使水面上升到50,應放入大球、小球各多少個?22.(10分)解方程:=1.23.(12分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關系,并說明理由.24.如圖是小強洗漱時的側面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).(cos80°≈0.17,sin80°≈0.98,≈1.414)(1)此時小強頭部E點與地面DK相距多少?(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念分別分析得出答案.詳解:A.是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;B.不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D.是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖形重合.2、B【解析】
勻速直線運動的路程s與運動時間t成正比,s-t圖象是一條傾斜的直線解答.【詳解】∵甲、乙兩人分別以4m/s和5m/s的速度,∴兩人的相對速度為1m/s,設乙的奔跑時間為t(s),所需時間為20s,兩人距離20s×1m/s=20m,故選B.【點睛】此題考查函數(shù)圖象問題,關鍵是根據(jù)勻速直線運動的路程s與運動時間t成正比解答.3、B【解析】
解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據(jù)平角為180°可得,∠2=90°﹣50°=40°.故選B.【點睛】本題考查平行線的性質,掌握兩直線平行,同位角相等是解題關鍵.4、A【解析】
分別把點A(?1,y1),點B(?1,y1)代入函數(shù)y=3x,求出點y1,y1的值,并比較出其大小即可.【詳解】解:∵點A(?1,y1),點B(?1,y1)是函數(shù)y=3x圖象上的點,∴y1=?6,y1=?3,∵?3>?6,∴y1<y1.故選A.【點睛】本題考查的是一次函數(shù)圖象上點的坐標特點,即一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式.5、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點睛】本題考查解直角三角形的應用﹣仰角俯角問題,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.6、C【解析】利用正方形的性質結合銳角三角函數(shù)關系得出正方形的邊長,進而得出變化規(guī)律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點睛”此題主要考查了正方形的性質以及銳角三角函數(shù)關系,得出正方形的邊長變化規(guī)律是解題關鍵.7、B【解析】試題解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分線交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故選B.8、C【解析】試題分析:∵底面圓的直徑為8cm,高為3cm,∴母線長為5cm,∴其表面積=π×4×5+42π+8π×6=84πcm2,故選C.考點:圓錐的計算;幾何體的表面積.9、D【解析】
根據(jù)方差反映數(shù)據(jù)的波動情況即可解答.【詳解】由于方差反映數(shù)據(jù)的波動情況,所以比較兩人成績穩(wěn)定程度的數(shù)據(jù)是方差.故選D.【點睛】本題主要考查了統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.10、D【解析】
根據(jù)把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.【點睛】此題主要考查了中心對稱圖形,關鍵是掌握中心對稱圖形的定義.二、填空題(本大題共6個小題,每小題3分,共18分)11、60°或120°.【解析】
連接OA、OB,根據(jù)切線的性質得出∠OAP的度數(shù),∠OBP的度數(shù);再根據(jù)四邊形的內角和是360°,求出∠AOB的度數(shù),有圓周角定理或圓內接四邊形的性質,求出∠ACB的度數(shù)即可.【詳解】解:連接OA、OB.∵PA,PB分別切⊙O于點A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四邊形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴即當C在D處時,∠ACB=60°.在四邊形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度數(shù)為60°或120°,故答案為60°或120°.【點睛】本題考查的是切線的性質定理,圓內接四邊形的性質,是一道基礎題.12、.【解析】
連接OA、OB,根據(jù)正六邊形的性質求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據(jù)勾股定理求出即可.【詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.13、或.【解析】
聯(lián)立方程可得,設,從而得出的圖象在上與x軸只有一個交點,當△時,求出此時m的值;當△時,要使在之間有且只有一個公共點,則當x=-2時和x=2時y的值異號,從而求出m的取值范圍;【詳解】聯(lián)立可得:,令,拋物線與直線在之間有且只有一個公共點,即的圖象在上與x軸只有一個交點,當△時,即△解得:,當時,當時,,滿足題意,當△時,令,,令,,,令代入解得:,此方程的另外一個根為:,故也滿足題意,故的取值范圍為:或故答案為:或.【點睛】此題考查的是根據(jù)二次函數(shù)與一次函數(shù)的交點問題,求函數(shù)中參數(shù)的取值范圍,掌握把函數(shù)的交點問題轉化為一元二次方程解的問題是解決此題的關鍵.14、-2【解析】試題分析:根據(jù)題意可得2k+3>2,k<2,解得﹣<k<2.因k為整數(shù),所以k=﹣2.考點:一次函數(shù)圖象與系數(shù)的關系.15、y=x-3【解析】【分析】由已知先求出點A、點B的坐標,繼而求出y=kx的解析式,再根據(jù)直線y=kx平移后經(jīng)過點B,可設平移后的解析式為y=kx+b,將B點坐標代入求解即可得.【詳解】當x=2時,y==3,∴A(2,3),B(2,0),∵y=kx過點A(2,3),∴3=2k,∴k=,∴y=x,∵直線y=x平移后經(jīng)過點B,∴設平移后的解析式為y=x+b,則有0=3+b,解得:b=-3,∴平移后的解析式為:y=x-3,故答案為:y=x-3.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的綜合應用,涉及到待定系數(shù)法,一次函數(shù)圖象的平移等,求出k的值是解題的關鍵.16、4π【解析】根據(jù)扇形的面積公式可得:扇形AOB的面積為,故答案為4π.三、解答題(共8題,共72分)17、探究:證明見解析;應用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結論;
應用:先算出BC,進而算出BD,再用勾股定理求出DE,即可得出結論;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結論;
(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,
∴∠BAC=∠DAE.
∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,
∴∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴△ABD≌△ACE.
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
應用:在Rt△ABC中,AB=AC=,
∴∠ABC=∠ACB=45°,BC=2,
∵CD=1,
∴BD=BC-CD=1,
由探究知,△ABD≌△ACE,
∴∠ACE=∠ABD=45°,
∴∠DCE=90°,
在Rt△BCE中,CD=1,CE=BD=1,
根據(jù)勾股定理得,DE=,
∴△DCE的周長為CD+CE+DE=2+
故答案為2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE
∴BC=CD-BD=CD-CE,
故答案為BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=BD-CD=CE-CD,
故答案為BC=CE-CD.18、(1)證明見解析;(1)①16;②14;【解析】
(1)根據(jù)平行四邊形的性質得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根據(jù)全等三角形的性質得到∠A=∠D,根據(jù)平行線的性質得到∠A+∠D=180°,由矩形的判定定理即可得到結論;(1)①根據(jù)相似三角形的性質得到,求得△GBC的面積為18,于是得到四邊形BCFE的面積為16;②根據(jù)四邊形BCFE的面積為16,列方程得到BC?AB=14,即可得到結論.【詳解】(1)證明:∵GB=GC,∴∠GBC=∠GCB,在平行四邊形ABCD中,∵AD∥BC,AB=DC,AB∥CD,∴GB-GE=GC-GF,∴BE=CF,在△ABE與△DCF中,,∴△ABE≌△DCF,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴∠A=∠D=90°,∴四邊形ABCD是矩形;(1)①∵EF∥BC,∴△GFE∽△GBC,∵EF=AD,∴EF=BC,∴,∵△GEF的面積為1,∴△GBC的面積為18,∴四邊形BCFE的面積為16,;②∵四邊形BCFE的面積為16,∴(EF+BC)?AB=×BC?AB=16,∴BC?AB=14,∴四邊形ABCD的面積為14,故答案為:14.【點睛】本題考查了相似三角形的判定和性質,矩形的判定和性質,圖形面積的計算,全等三角形的判定和性質,證得△GFE∽△GBC是解題的關鍵.19、(1)y=﹣x+,y=;(2)12;(3)x<﹣2或0<x<4.【解析】
(1)將點A坐標代入解析式,可求解析式;(2)一次函數(shù)和反比例函數(shù)解析式組成方程組,求出點B坐標,即可求△ABF的面積;(3)直接根據(jù)圖象可得.【詳解】(1)∵一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A(﹣3,2)、B兩點,∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6∴b=,k=﹣6∴一次函數(shù)解析式y(tǒng)=﹣,反比例函數(shù)解析式y(tǒng)=.(2)根據(jù)題意得:,解得:,∴S△ABF=×4×(4+2)=12(3)由圖象可得:x<﹣2或0<x<4【點睛】本題考查了反比例函數(shù)圖象與一次函數(shù)圖象的交點問題,待定系數(shù)法求解析式,熟練運用函數(shù)圖象解決問題是本題的關鍵.20、1.【解析】分析:原式利用特殊角角的三角函數(shù)值,平方根定義,零指數(shù)冪法則,以及絕對值的代數(shù)意義化簡,計算即可求出值.詳解:原式=﹣2+1+=1.點睛:本題考查了實數(shù)的運算,熟練掌握運算法則是解答本題的關鍵.21、詳見解析【解析】
(1)設一個小球使水面升高x厘米,一個大球使水面升高y厘米,根據(jù)圖象提供的數(shù)據(jù)建立方程求解即可.(1)設應放入大球m個,小球n個,根據(jù)題意列二元一次方程組求解即可.【詳解】解:(1)設一個小球使水面升高x厘米,由圖意,得2x=21﹣16,解得x=1.設一個大球使水面升高y厘米,由圖意,得1y=21﹣16,解得:y=2.所以,放入一個小球水面升高1cm,放入一個大球水面升高2cm.(1)設應放入大球m個,小球n個,由題意,得,解得:.答:如果要使水面上升到50cm,應放入大球4個,小球6個.22、x=1【解析】
方程兩邊同乘轉化為整式方程,解整式方程后進行檢驗即可得.【詳解】解:方程兩邊同乘得:,整理,得,解這個方程得,,經(jīng)檢驗,是增根,舍去,所以,原方程的根是.【點睛】本題考查了解分式方程,解分式方程的關鍵是方程兩邊同乘分母的最簡公分母化為整式方程然后求解,注意要進行檢驗.23、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質,即可判定△FAE≌△CDE,即可得到CD=FA,再根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)自卸車租賃服務協(xié)議(2024版)版B版
- 二零二五年度鋼材現(xiàn)貨及期貨交易代理合同3篇
- 二零二五年度地磚供貨與旅游度假區(qū)合同3篇
- 2024版拓展訓練合同范本大全
- 濰坊醫(yī)學院《阿拉伯文學選讀》2023-2024學年第一學期期末試卷
- 天津工業(yè)大學《土木水利(建筑與土木工程)領域論文寫作指導》2023-2024學年第一學期期末試卷
- 泰山護理職業(yè)學院《音樂會實踐(2)》2023-2024學年第一學期期末試卷
- 2025年度旅游線路開發(fā)居間服務合同范本6篇
- 2025年度船舶動力系統(tǒng)研發(fā)與建造合同3篇
- 二零二五年度高效節(jié)能蔬菜大棚租賃合同3篇
- 小兒甲型流感護理查房
- 霧化吸入療法合理用藥專家共識(2024版)解讀
- 寒假作業(yè)(試題)2024-2025學年五年級上冊數(shù)學 人教版(十二)
- 銀行信息安全保密培訓
- 市政道路工程交通疏解施工方案
- 2024年部編版初中七年級上冊歷史:部分練習題含答案
- 拆遷評估機構選定方案
- 床旁超聲監(jiān)測胃殘余量
- 上海市松江區(qū)市級名校2025屆數(shù)學高一上期末達標檢測試題含解析
- 綜合實踐活動教案三上
- 《新能源汽車電氣設備構造與維修》項目三 新能源汽車照明與信號系統(tǒng)檢修
評論
0/150
提交評論