版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年河南省開封市西姜寨鄉(xiāng)中學高一數(shù)學文模擬試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.在等差數(shù)列中,已知,,則(
)A.9
B.12
C.15
D.18參考答案:A2.下列事件:①如果,那么.②某人射擊一次,命中靶心.③任取一實數(shù)a(且),函數(shù)是增函數(shù),④從盛有一紅、二白共三個球的袋子中,摸出一球觀察結果是黃球.其中是隨機事件的為(
)A.①② B.③④ C.①④ D.②③參考答案:D①是必然事件;②中時,單調遞增,時,為減函數(shù),故是隨機事件;③是隨機事件;④是不可能事件故答案選3.函數(shù)
()的大致圖象是
參考答案:C4.已知函數(shù),若實數(shù)是方程的解,且,則的值A.等于0
B.恒為負值
C.恒為正值
D.不能確定參考答案:C5.若f(lgx)=x,則f(2)=()A.lg2 B.2 C.102 D.210參考答案:C【考點】函數(shù)的值;對數(shù)的運算性質.【分析】由已知得f(2)=f(lg102)=102.【解答】解:∵f(lgx)=x,∴f(2)=f(lg102)=102.故選:C.6.設Sn為等差數(shù)列{an}的前n項和,,,則(
)A.-6
B.-4
C.-2
D.2參考答案:A由已知得解得.故選A.
7.已知映射f:AàB,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中的元素在映射f下的象,且對任意的a∈A,在B中和它對應的元素是|a|,則集合B中的元素的個數(shù)是(
)
A.4
B.5
C.6
D.7參考答案:A8.(5分)若a、b為實數(shù),集合M={,1},N={a,0},f:x→x表示把集合M中的元素x映射到集合N中仍為x,則a+b為() A. 0 B. 1 C. ﹣1 D. ±1參考答案:B考點: 映射.專題: 計算題.分析: 由于映射把集合M中的元素x映射到集合N中仍為x,而M和N中都只有2個元素,故M=N,故有=0且a=1,由此求得a和b的值,即可得到a+b的值.解答: 由于映射把集合M中的元素x映射到集合N中仍為x,而M和N中都只有2個元素,故M=N,∴=0且a=1.∴b=0,a=1,∴a+b=1+0=1.故選B.點評: 本題主要考查映射的定義,判斷M=N,是解題的關鍵,屬于基礎題.9.函數(shù)f(x)=|log3x|在區(qū)間[a,b]上的值域為[0,1],則b-a的最小值為(
)A.2
B.
C.
D.1參考答案:B10.過正方體ABCD-A1B1C1D1的頂點A作直線l,使l與棱AB,AD,AA1所成的角都相等,這樣的直線l可以作()A.1條
B.2條C.3條
D.4條參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.如上圖,中,,,.在三角形內挖去半圓(圓心在邊上,半圓與相切于點,與交于),則圖中陰影部分繞直線旋轉一周所得旋轉體的體積為
.
參考答案:略12.已知定義在上的奇函數(shù),當時,,那么時,
.參考答案:
解析:設,則,,∵∴,13.(5分)函數(shù)g(x)=x(2﹣x)的遞增區(qū)間是
.參考答案:(﹣∞,1]考點: 二次函數(shù)的性質.專題: 函數(shù)的性質及應用.分析: 根據(jù)二次函數(shù)的圖象即可求出其單調增區(qū)間.解答: g(x)=x(2﹣x)=2x﹣x2=﹣(x﹣1)2+1,其圖象開口向下,對稱軸為:x=1,所以函數(shù)的遞增區(qū)間為:(﹣∞,1].故答案為:(﹣∞,1].點評: 本題考查二次函數(shù)的單調性問題,二次函數(shù)單調區(qū)間一般借助圖象求解,主要與二次函數(shù)的開口方向與對稱軸有關.屬于基礎題.14.已知函數(shù)f(x+1)=3x+4,則f(x)的解析式為________________.參考答案:f(x)=3x+1
15.=_____________;參考答案:16.(5分)已知△ABC中,||=||=1,∠ACB=120°,O為△ABC的外心,=λ+μ,則λ+μ=
.參考答案:0考點: 平面向量的基本定理及其意義.專題: 平面向量及應用.分析: 如圖所示,||=||=1,∠ACB=120°,O為△ABC的外心,可得四邊形OACB為菱形,再利用向量的平行四邊形法則及其向量基本定理即可得出.解答: 如圖所示,∵||=||=1,∠ACB=120°,O為△ABC的外心,∴四邊形OACB為菱形,∴,又=λ+μ,則λ+μ=0.故答案為:0.點評: 本題考查了向量的平行四邊形法則、向量基本定理、菱形的性質,考查了推理能力與計算能力,屬于中檔題.17.已知角的終邊過點,則___________.參考答案:試題分析:因為,所以有,即角在第四象限,又,所以.考點:三角函數(shù)與坐標的關系.三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.在公比不為1的等比數(shù)列{an}中,,且依次成等差數(shù)列(1)求數(shù)列{an}的通項公式;(2)令,設數(shù)列{bn}的前n項和Sn,求證:參考答案:(1)(2)見證明【分析】(1)根據(jù)已知條件得到關于的方程組,解方程組得的值,即得數(shù)列的通項公式;(2)先求出,,再利用裂項相消法求,不等式即得證.【詳解】(1)設公比為,,,成等差數(shù)列,可得,即,解得(舍去),或,又,解得所以.(2)故,得【點睛】本題主要考查等比數(shù)列通項的求法,考查等差數(shù)列前n項和的求法,考查裂項相消法求和,意在考查學生對這些知識的理解掌握水平,屬于基礎題.19.(10分)已知等差數(shù)列滿足:,的前n項和為.(Ⅰ)求及;(Ⅱ)令(),求數(shù)列的前n項和.參考答案:解:(Ⅰ)設等差數(shù)列的公差為d,因為,,所以有,解得,
……2分所以;
……3分。
……4分(Ⅱ)由(Ⅰ)知,,
……6分
……8分
……9分
∴數(shù)列的前n項和。
……10分20.(12分)計算:log3+lg25+lg4++log23?log34;設集合A={x|≤2﹣x≤4},B={x|m﹣1<x<2m+1}.若A∪B=A,求m的取值范圍.參考答案:考點: 對數(shù)的運算性質;并集及其運算.專題: 函數(shù)的性質及應用;集合.分析: (1)根據(jù)對數(shù)的運算性質計算即可,(2)根據(jù)集合的運算,求出a范圍,解答: 解:(1)log3+lg25+lg4++log23?log34=log3﹣1+2lg5+2lg2+2+?2log32=﹣+2+2+2=;(2)化簡集合A=,集合B=(m﹣1,2m+1)∵A∪B=A,∴B?A,當2m+1≤m﹣1,即m≤﹣2時,B=??A,當B≠?,即m>﹣2時,∴,解得﹣1≤m≤2,綜上所述m的取值范圍是(﹣∞,﹣2]∪點評: 本題考查了對數(shù)的運算性質和集合的運算,屬于基礎題21.△ABC的三個頂點為A(4,0),B(8,10),C(0,6),求: (1)BC邊上的高所在的直線方程; (2)過C點且平行于AB的直線方程. 參考答案:【考點】待定系數(shù)法求直線方程. 【專題】方程思想;綜合法;直線與圓. 【分析】(1)根據(jù)點斜式方程求出直線方程即可;(2)先求出所求直線的斜率,再根據(jù)點斜式求出直線方程即可. 【解答】解:(1)BC的斜率k1=,則BC邊上的高所在直線的斜率k2=﹣2,…(4分) 由點斜式得直線BC邊上的高所在直線方程為y﹣0=﹣2(x﹣4),即2x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球風電用工業(yè)碳刷行業(yè)調研及趨勢分析報告
- 2025-2030全球服裝金屬探測器行業(yè)調研及趨勢分析報告
- 2025年全球及中國高性能航空涂料行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國眼科手術剪行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025公路工程進度、計量、合同管理監(jiān)理內容
- 餐桌茶幾家具買賣合同
- 年貨物運輸合同范本
- 2025合同模板合伙協(xié)議范本
- 大米購銷的合同
- 物聯(lián)網(wǎng)系統(tǒng)定制與開發(fā)合同
- 浙江省杭州市2024-2025學年高三上學期一模英語試題(含解析無聽力原文及音頻)
- 2024年湖南高速鐵路職業(yè)技術學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 精裝修樣板房房屋使用說明
- 喬遷新居結婚典禮主持詞
- 小學四年級數(shù)學競賽試題(附答案)
- 魯科版高中化學必修2全冊教案
- 《病理學基礎》知識考核試題題庫與答案
- 人口分布 高一地理下學期人教版 必修第二冊
- 四年級上冊英語試題-Module 9 Unit 1 What happened to your head--外研社(一起)(含答案)
- 子宮內膜異位癥診療指南
- 《高級計量經(jīng)濟學》-上課講義課件
評論
0/150
提交評論