版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省洛陽市洛龍區(qū)第一實驗校2024屆中考數學最后一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某車間需加工一批零件,車間20名工人每天加工零件數如表所示:每天加工零件數45678人數36542每天加工零件數的中位數和眾數為()A.6,5 B.6,6 C.5,5 D.5,62.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點,則CM的長為()A. B.2 C. D.33.人的頭發(fā)直徑約為0.00007m,這個數據用科學記數法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×1054.在對某社會機構的調查中收集到以下數據,你認為最能夠反映該機構年齡特征的統(tǒng)計量是()年齡13141525283035其他人數30533171220923A.平均數 B.眾數 C.方差 D.標準差5.如果關于的不等式組的整數解僅有、,那么適合這個不等式組的整數、組成的有序數對共有()A.個 B.個 C.個 D.個6.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.107.如圖的幾何體中,主視圖是中心對稱圖形的是()A. B. C. D.8.如圖,將△ABC繞點C順時針旋轉,使點B落在AB邊上點B′處,此時,點A的對應點A′恰好落在BC邊的延長線上,下列結論錯誤的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′9.-4的相反數是()A. B. C.4 D.-410.下列是我國四座城市的地鐵標志圖,其中是中心對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.若關于x的方程有兩個不相等的實數根,則實數a的取值范圍是______.12.計算(﹣a)3?a2的結果等于_____.13.如圖,PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠P=40°,則∠BAC=.14.若m﹣n=4,則2m2﹣4mn+2n2的值為_____.15.2011年,我國汽車銷量超過了18500000輛,這個數據用科學記數法表示為▲輛.16.如圖,已知函數y=3x+b和y=ax﹣3的圖象交于點P(﹣2,﹣5),則根據圖象可得不等式3x+b>ax﹣3的解集是_____.17.如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.三、解答題(共7小題,滿分69分)18.(10分)拋物線y=ax2+bx+3(a≠0)經過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數;(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.19.(5分)某景區(qū)商店銷售一種紀念品,每件的進貨價為40元.經市場調研,當該紀念品每件的銷售價為50元時,每天可銷售200件;當每件的銷售價每增加1元,每天的銷售數量將減少10件.當每件的銷售價為52元時,該紀念品每天的銷售數量為件;當每件的銷售價x為多少時,銷售該紀念品每天獲得的利潤y最大?并求出最大利潤.20.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.21.(10分)化簡:(x+7)(x-6)-(x-2)(x+1)22.(10分)已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時間t(h)的函數關系的圖象,根據圖象解答下列問題:(1)請用t分別表示A、B的路程sA、sB;(2)在A出發(fā)后幾小時,兩人相距15km?23.(12分)如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結AE.(1)如圖1,當點D與M重合時,求證:四邊形ABDE是平行四邊形;(2)如圖2,當點D不與M重合時,(1)中的結論還成立嗎?請說明理由.(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.①求∠CAM的度數;②當FH=,DM=4時,求DH的長.24.(14分)某生姜種植基地計劃種植A,B兩種生姜30畝.已知A,B兩種生姜的年產量分別為2000千克/畝、2500千克/畝,收購單價分別是8元/千克、7元/千克.(1)若該基地收獲兩種生姜的年總產量為68000千克,求A,B兩種生姜各種多少畝?(2)若要求種植A種生姜的畝數不少于B種的一半,那么種植A,B兩種生姜各多少畝時,全部收購該基地生姜的年總收入最多?最多是多少元?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據眾數、中位數的定義分別進行解答即可.【詳解】由表知數據5出現了6次,次數最多,所以眾數為5;因為共有20個數據,所以中位數為第10、11個數據的平均數,即中位數為=6,故選A.【點睛】本題考查了眾數和中位數的定義.用到的知識點:一組數據中出現次數最多的數據叫做這組數據的眾數.將一組數據按照從小到大(或從大到?。┑捻樞蚺帕?,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.2、C【解析】
延長BC到E使BE=AD,利用中點的性質得到CM=DE=AB,再利用勾股定理進行計算即可解答.【詳解】解:延長BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點,∵M是BD的中點,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點睛】此題考查平行四邊形的性質,勾股定理,解題關鍵在于作輔助線.3、B【解析】
絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:0.00007m,這個數據用科學記數法表示7×10﹣1.故選:B.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10﹣n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.4、B【解析】分析:根據平均數的意義,眾數的意義,方差的意義進行選擇.詳解:由于14歲的人數是533人,影響該機構年齡特征,因此,最能夠反映該機構年齡特征的統(tǒng)計量是眾數.故選B.點睛:本題主要考查統(tǒng)計的有關知識,主要包括平均數、中位數、眾數、方差的意義.反映數據集中程度的統(tǒng)計量有平均數、中位數、眾數、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當的運用.5、D【解析】
求出不等式組的解集,根據已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.【詳解】解不等式2x?a≥0,得:x≥,解不等式3x?b≤0,得:x≤,∵不等式組的整數解僅有x=2、x=3,則1<≤2、3≤<4,解得:2<a≤4、9≤b<12,則a=3時,b=9、10、11;當a=4時,b=9、10、11;所以適合這個不等式組的整數a、b組成的有序數對(a,b)共有6個,故選:D.【點睛】本題考查了解一元一次不等式組,不等式組的整數解,有序實數對的應用,解此題的根據是求出a、b的值.6、C【解析】
根據折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,
因為BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面積=CF?CE=8;
故選:C.點睛:
本題利用了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質,平行線的性質,三角形的面積公式等知識點.7、C【解析】解:球是主視圖是圓,圓是中心對稱圖形,故選C.8、C【解析】
根據旋轉的性質求解即可.【詳解】解:根據旋轉的性質,A:∠與∠均為旋轉角,故∠=∠,故A正確;B:,,又,,故B正確;D:,B′C平分∠BB′A′,故D正確.無法得出C中結論,故答案:C.【點睛】本題主要考查三角形旋轉后具有的性質,注意靈活運用各條件9、C【解析】
根據相反數的定義即可求解.【詳解】-4的相反數是4,故選C.【點晴】此題主要考查相反數,解題的關鍵是熟知相反數的定義.10、D【解析】
根據中心對稱圖形的定義解答即可.【詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、a>﹣.【解析】試題分析:已知關于x的方程2x2+x﹣a=0有兩個不相等的實數根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.考點:根的判別式.12、﹣a5【解析】
根據冪的乘方和積的乘方運算法則計算即可.【詳解】解:(-a)3?a2=-a3?a2=-a3+2=-a5.故答案為:-a5.【點睛】本題考查了冪的乘方和積的乘方運算.13、20°【解析】
根據切線的性質可知∠PAC=90°,由切線長定理得PA=PB,∠P=40°,求出∠PAB的度數,用∠PAC﹣∠PAB得到∠BAC的度數.【詳解】解:∵PA是⊙O的切線,AC是⊙O的直徑,∴∠PAC=90°.∵PA,PB是⊙O的切線,∴PA=PB.∵∠P=40°,∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.故答案為20°.【點睛】本題考查了切線的性質,根據切線的性質和切線長定理進行計算求出角的度數.14、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當m﹣n=4時,原式=2×42=1.故答案為:1.15、2.85×2.【解析】
根據科學記數法的定義,科學記數法的表示形式為a×20n,其中2≤|a|<20,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于2還是小于2.當該數大于或等于2時,n為它的整數位數減2;當該數小于2時,-n為它第一個有效數字前0的個數(含小數點前的2個0).【詳解】解:28500000一共8位,從而28500000=2.85×2.16、x>﹣1.【解析】
根據函數y=3x+b和y=ax-3的圖象交于點P(-1,-5),然后根據圖象即可得到不等式
3x+b>ax-3的解集.【詳解】解:∵函數y=3x+b和y=ax-3的圖象交于點P(-1,-5),∴不等式
3x+b>ax-3的解集是x>-1,故答案為:x>-1.【點睛】本題考查一次函數與一元一次不等式、一次函數的圖象,熟練掌握是解題的關鍵.17、10或1【解析】
分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當水位上升到圓心以下時
水面寬80cm時,則,水面上升的高度為:;當水位上升到圓心以上時,水面上升的高度為:,綜上可得,水面上升的高度為30cm或1cm,故答案為:10或1.【點睛】本題考查了垂徑定理的應用,掌握垂徑定理、靈活運用分類討論的思想是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).【解析】試題分析:把點的坐標代入即可求得拋物線的解析式.作BH⊥AC于點H,求出的長度,即可求出∠ACB的度數.延長CD交x軸于點G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直線的方程,和拋物線的方程聯(lián)立即可求得點的坐標.試題解析:(1)由題意,得解得.∴這條拋物線的表達式為.(2)作BH⊥AC于點H,∵A點坐標是(-1,0),C點坐標是(0,3),B點坐標是(,0),∴AC=,AB=,OC=3,BC=.∵,即∠BAD=,∴.Rt△BCH中,,BC=,∠BHC=90o,∴.又∵∠ACB是銳角,∴.(3)延長CD交x軸于點G,∵Rt△AOC中,AO=1,AC=,∴.∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.∴AG=CG.∴.∴AG=1.∴G點坐標是(4,0).∵點C坐標是(0,3),∴.∴解得,(舍).∴點D坐標是19、(1)180;(2)每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.【解析】分析:(1)根據“當每件的銷售價每增加1元,每天的銷售數量將減少10件”,即可解答;(2)根據等量關系“利潤=(售價﹣進價)×銷量”列出函數關系式,根據二次函數的性質,即可解答.詳解:(1)由題意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案為180;(2)由題意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.點睛:此題主要考查了二次函數的應用,根據已知得出二次函數的最值是中考中考查重點,同學們應重點掌握.20、(1)(1,4)(2)①點M坐標(﹣,)或(﹣,﹣);②m的值為或【解析】
(1)利用待定系數法即可解決問題;(2)①根據tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構建方程即可解決問題;②因為點M、N關于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點D坐標(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當點M在x軸上方時,=,解得m=﹣或3(舍棄),∴M(﹣,),當點M在x軸下方時,=,解得m=﹣或m=3(舍棄),∴點M(﹣,﹣),綜上所述,滿足條件的點M坐標(﹣,)或(﹣,﹣);②如圖中,∵MN∥x軸,∴點M、N關于拋物線的對稱軸對稱,∵四邊形MPNQ是正方形,∴點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,當﹣m2+2m+3=1﹣m時,解得m=,當﹣m2+2m+3=m﹣1時,解得m=,∴滿足條件的m的值為或.【點睛】本題考查二次函數綜合題、銳角三角函數、正方形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數構建方程解決問題,屬于中考壓軸題.21、2x-40.【解析】
原式利用多項式乘以多項式法則計算,去括號合并即可.【詳解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.22、(1)sA=45t﹣45,sB=20t;(2)在A出發(fā)后小時或小時,兩人相距15km.【解析】
(1)根據函數圖象中的數據可以分別求得s與t的函數關系式;(2)根據(1)中的函數解析式可以解答本題.【詳解】解:(1)設sA與t的函數關系式為sA=kt+b,,得,即sA與t的函數關系式為sA=45t﹣45,設sB與t的函數關系式為sB=at,60=3a,得a=20,即sB與t的函數關系式為sB=20t;(2)|45t﹣45﹣20t|=15,解得,t1=,t2=,,,即在A出發(fā)后小時或小時,兩人相距15km.【點睛】本題主要考查一次函數的應用,涉及到直線上點的坐標與方程,利用待定系數法求一次函數的解析式是解題的關鍵.23、(1)證明見解析;(2)結論:成立.理由見解析;(3)①30°,②1+.【解析】
(1)只要證明AB=ED,AB∥ED即可解決問題;(2)成立.如圖2中,過點M作MG∥DE交CE于G.由四邊形DMGE是平行四邊形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四邊形ABDE是平行四邊形;
(3)①如圖3中,取線段HC的中點I,連接MI,只要證明MI=AM,MI⊥AC,即可解決問題;②設DH=x,則AH=x,AD=2x,推出AM=4+2x,BH=4+2x,由四邊形ABDE是平行四邊形,推出DF∥AB,推出,可得,解方程即可;【詳解】(1)證明:如圖1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中線,且D與M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四邊形ABDE是平行四邊形.(2)結論:成立.理由如下:如圖2中,過點M作MG∥DE交CE于G.∵CE∥AM,∴四邊形DMGE是平行四邊形,∴ED=GM,且
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025江西省建筑安全員考試題庫附答案
- 《急救護理困擾》課件
- 《護理教育學輔導》課件
- 【大學課件】土木工程概論 土木工程材料
- 高端裝備數字化智能工廠項目可行性研究報告寫作模板-備案審批
- 《莫言英文簡介》課件
- 單位人力資源管理制度匯編大全十篇
- 甘肅省武威市涼州區(qū)2024-2025學年高一上學期期末考試歷史試卷(含答案)
- 循環(huán)經濟產業(yè)園雨污分流改造及再生水回用項目可行性研究報告寫作模板-備案審批
- 單位管理制度收錄大合集【職工管理篇】
- DB14-T 2730-2023 產后康復管理師等級劃分與評定
- 《預防流感》主題班會教案3篇
- 湖南省炎德英才大聯(lián)考2025屆高二數學第一學期期末考試試題含解析
- 中等職業(yè)學?!稒C械制造工藝基礎》課程標準
- DBJ33T 1312-2024 工程渣土再生填料道路路基技術規(guī)程
- 高級流行病學與醫(yī)學統(tǒng)計學智慧樹知到期末考試答案章節(jié)答案2024年浙江中醫(yī)藥大學
- 服務開口合同模板
- 2024年200MW-400MWh電化學儲能電站設計方案
- 2024數據采集合同模板
- SH/T 3227-2024 石油化工裝置固定水噴霧和水(泡沫)噴淋滅火系統(tǒng)技術標準(正式版)
- (正式版)JBT 7248-2024 閥門用低溫鋼鑄件技術規(guī)范
評論
0/150
提交評論