湖北省鄂州市區(qū)2024年中考試題猜想數學試卷含解析_第1頁
湖北省鄂州市區(qū)2024年中考試題猜想數學試卷含解析_第2頁
湖北省鄂州市區(qū)2024年中考試題猜想數學試卷含解析_第3頁
湖北省鄂州市區(qū)2024年中考試題猜想數學試卷含解析_第4頁
湖北省鄂州市區(qū)2024年中考試題猜想數學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省鄂州市區(qū)2024年中考試題猜想數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.據統計,第22屆冬季奧林匹克運動會的電視轉播時間長達88000小時,社交網站和國際奧委會官方網站也創(chuàng)下冬奧會收看率紀錄.用科學記數法表示88000為()A.0.88×105B.8.8×104C.8.8×105D.8.8×1062.一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時間的函數圖形如圖所示,下列說法正確的有()①快車追上慢車需6小時;②慢車比快車早出發(fā)2小時;③快車速度為46km/h;④慢車速度為46km/h;⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時A.2個 B.3個 C.4個 D.5個3.從①②③④中選擇一塊拼圖板可與左邊圖形拼成一個正方形,正確的選擇為()A.① B.② C.③ D.④4.設x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=()A.6B.8C.10D.125.下面幾何的主視圖是()A. B. C. D.6.如圖,小正方形邊長均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.7.義安區(qū)某中學九年級人數相等的甲、乙兩班學生參加同一次數學測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定8.二次函數的圖象如圖所示,則反比例函數與一次函數在同一坐標系中的大致圖象是()A. B. C. D.9.下列每組數分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm10.拒絕“餐桌浪費”,刻不容緩.節(jié)約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個數據用科學記數法表示為()A. B. C. D..二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=26,CD=24,那么sin∠OCE=▲.12.“五一”期間,一批九年級同學包租一輛面包車前去竹海游覽,面包車的租金為300元,出發(fā)時,又增加了4名同學,且租金不變,這樣每個同學比原來少分攤了20元車費.若設參加游覽的同學一共有x人,為求x,可列方程_____.13.在一次射擊訓練中,某位選手五次射擊的環(huán)數分別為5,8,7,6,1.則這位選手五次射擊環(huán)數的方差為.14.一元二次方程x﹣1=x2﹣1的根是_____.15.如圖,在平面直角坐標系中,已知點A(1,1),以點O為旋轉中心,將點A逆時針旋轉到點B的位置,則的長為_____.16.如圖,直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,那么當y1>y2時,x的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.

如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設運動時間為x(s),FG的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).

(1)當x為何值時,OP∥AC;

(2)求y與x之間的函數關系式,并確定自變量x的取值范圍;

(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數據:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)18.(8分)地下停車場的設計大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據規(guī)定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛入.小剛認為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結果精確到0.1m,參考數據:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)19.(8分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數按一、二、三、四班分別記為A1,A2,A3,A4,現對A1,A2,A3,A4統計后,制成如圖所示的統計圖.求七年級已“建檔立卡”的貧困家庭的學生總人數;將條形統計圖補充完整,并求出A1所在扇形的圓心角的度數;現從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.20.(8分)關于的一元二次方程有實數根.求的取值范圍;如果是符合條件的最大整數,且一元二次方程與方程有一個相同的根,求此時的值.21.(8分)如圖,圖①是某電腦液晶顯示器的側面圖,顯示屏AO可以繞點O旋轉一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(如圖②),人觀看屏幕最舒適.此時測得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長度.(結果精確到0.1cm)22.(10分)計算:-2-2-+023.(12分)如圖,已知反比例函數y=k1x與一次函數y=k2x+b的圖象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面積;若M(x1,y1),N(x2,y2)是反比例函數y=k1x的圖象上的兩點,且x1<x2,y24.已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GE?GD.求證:∠ACF=∠ABD;連接EF,求證:EF?CG=EG?CB.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于1還是小于1.當該數大于或等于1時,n為它的整數位數減1;當該數小于1時,-n為它第一個有效數字前0的個數(含小數點前的1個0).因此,∵88000一共5位,∴88000=8.88×104.故選B.考點:科學記數法.2、B【解析】

根據圖形給出的信息求出兩車的出發(fā)時間,速度等即可解答.【詳解】解:①兩車在276km處相遇,此時快車行駛了4個小時,故錯誤.②慢車0時出發(fā),快車2時出發(fā),故正確.③快車4個小時走了276km,可求出速度為69km/h,錯誤.④慢車6個小時走了276km,可求出速度為46km/h,正確.⑤慢車走了18個小時,速度為46km/h,可得A,B距離為828km,正確.⑥快車2時出發(fā),14時到達,用了12小時,錯誤.故答案選B.【點睛】本題考查了看圖手機信息的能力,注意快車并非0時刻出發(fā)是解題關鍵.3、C【解析】

根據正方形的判定定理即可得到結論.【詳解】與左邊圖形拼成一個正方形,正確的選擇為③,故選C.【點睛】本題考查了正方形的判定,是一道幾何結論開放題,認真觀察,熟練掌握和應用正方形的判定方法是解題的關鍵.4、C【解析】試題分析:根據根與系數的關系得到x1+x2=2,x1?x2=﹣3,再變形x12+x22得到(x1+x2)2﹣2x1?x2,然后利用代入計算即可.解:∵一元二次方程x2﹣2x﹣3=0的兩根是x1、x2,∴x1+x2=2,x1?x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1?x2=22﹣2×(﹣3)=1.故選C.5、B【解析】

主視圖是從物體正面看所得到的圖形.【詳解】解:從幾何體正面看故選B.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.6、B【解析】

根據網格的特點求出三角形的三邊,再根據相似三角形的判定定理即可求解.【詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項B的各邊為1、、與它的各邊對應成比例.故選B.【點晴】此題主要考查相似三角形的判定,解題的關鍵是熟知相似三角形的判定定理.7、B【解析】

根據方差的意義,方差反映了一組數據的波動大小,故可由兩人的方差得到結論.【詳解】∵S甲2>S乙2,∴成績較為穩(wěn)定的是乙班。故選:B.【點睛】本題考查了方差,解題的關鍵是掌握方差的概念進行解答.8、D【解析】

根據拋物線和直線的關系分析.【詳解】由拋物線圖像可知,所以反比例函數應在二、四象限,一次函數過原點,應在二、四象限.故選D【點睛】考核知識點:反比例函數圖象.9、C【解析】

根據三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【點睛】本題考查了三角形的三邊關系,關鍵是靈活運用三角形三邊關系.10、C【解析】

用科學記數法表示較大的數時,一般形式為a×10n,其中1≤|a|<10,n為整數,據此判斷即可.【詳解】32400000=3.24×107元.

故選C.【點睛】此題主要考查了用科學記數法表示較大的數,一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】垂徑定理,勾股定理,銳角三角函數的定義。【分析】如圖,設AB與CD相交于點E,則根據直徑AB=26,得出半徑OC=13;由CD=24,CD⊥AB,根據垂徑定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根據正弦函數的定義,求出sin∠OCE的度數:。12、﹣=1.【解析】原有的同學每人分擔的車費應該為,而實際每人分擔的車費為,方程應該表示為:﹣=1.故答案是:﹣=1.13、2.【解析】試題分析:五次射擊的平均成績?yōu)?(5+7+8+6+1)=7,方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.考點:方差.14、x=0或x=1.【解析】

利用因式分解法求解可得.【詳解】∵(x﹣1)﹣(x+1)(x﹣1)=0,∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,則x=0或x=1,故答案為:x=0或x=1.【點睛】本題主要考查了解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.15、.【解析】

由點A(1,1),可得OA的長,點A在第一象限的角平分線上,可得∠AOB=45°,,再根據弧長公式計算即可.【詳解】∵A(1,1),∴OA=,點A在第一象限的角平分線上,∵以點O為旋轉中心,將點A逆時針旋轉到點B的位置,∴∠AOB=45°,∴的長為=,故答案為:.【點睛】本題考查坐標與圖形變化——旋轉,弧長公式,熟練掌握旋轉的性質以及弧長公式是解題的關鍵.本題中求出OA=以及∠AOB=45°也是解題的關鍵.16、﹣1<x<2【解析】

根據圖象得出取值范圍即可.【詳解】解:因為直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,所以當y1>y2時,﹣1<x<2,故答案為﹣1<x<2【點睛】此題考查二次函數與不等式,關鍵是根據圖象得出取值范圍.三、解答題(共8題,共72分)17、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【解析】

(1)由于O是EF中點,因此當P為FG中點時,OP∥EG∥AC,據此可求出x的值.(2)由于四邊形AHPO形狀不規(guī)則,可根據三角形AFH和三角形OPF的面積差來得出四邊形AHPO的面積.三角形AHF中,AH的長可用AF的長和∠FAH的余弦值求出,同理可求出FH的表達式(也可用相似三角形來得出AH、FH的長).三角形OFP中,可過O作OD⊥FP于D,PF的長易知,而OD的長,可根據OF的長和∠FOD的余弦值得出.由此可求得y、x的函數關系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數式中即可得出x的值.【詳解】解:(1)∵Rt△EFG∽Rt△ABC∴,即,∴FG==3cm∵當P為FG的中點時,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當x為1.5s時,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),FH=(x+5)過點O作OD⊥FP,垂足為D∵點O為EF中點∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假設存在某一時刻x,使得四邊形OAHP面積與△ABC面積的比為13:1則S四邊形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【點睛】本題是比較常規(guī)的動態(tài)幾何壓軸題,第1小題運用相似形的知識容易解決,第2小題同樣是用相似三角形建立起函數解析式,要說的是本題中說明了要寫出自變量x的取值范圍,而很多試題往往不寫,要記住自變量x的取值范圍是函數解析式不可分離的一部分,無論命題者是否交待了都必須寫,第3小題只要根據函數解析式列個方程就能解決.18、小亮說的對,CE為2.6m.【解析】

先根據CE⊥AE,判斷出CE為高,再根據解直角三角形的知識解答.【詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮說的對.答:小亮說的對,CE為2.6m.【點睛】本題主要考查了解直角三角形的應用,主要是正弦、正切概念及運算,解決本題的關鍵把實際問題轉化為數學問題.19、(1)15人;(2)補圖見解析.(3).【解析】

(1)根據三班有6人,占的百分比是40%,用6除以所占的百分比即可得總人數;(2)用總人數減去一、三、四班的人數得到二班的人數即可補全條形圖,用一班所占的比例乘以360°即可得A1所在扇形的圓心角的度數;(3)根據題意畫出樹狀圖,得出所有可能,進而求恰好選出一名男生和一名女生的概率.【詳解】解:(1)七年級已“建檔立卡”的貧困家庭的學生總人數:6÷40%=15人;(2)A2的人數為15﹣2﹣6﹣4=3(人)補全圖形,如圖所示,A1所在圓心角度數為:×360°=48°;(3)畫出樹狀圖如下:共6種等可能結果,符合題意的有3種∴選出一名男生一名女生的概率為:P=.【點睛】本題考查了條形圖與扇形統計圖,概率等知識,準確識圖,從圖中發(fā)現有用的信息,正確根據已知畫出樹狀圖得出所有可能是解題關鍵.20、(1);(2)的值為.【解析】

(1)利用判別式的意義得到,然后解不等式即可;(2)利用(1)中的結論得到的最大整數為2,解方程解得,把和分別代入一元二次方程求出對應的,同時滿足.【詳解】解:(1)根據題意得,解得;(2)的最大整數為2,方程變形為,解得,∵一元二次方程與方程有一個相同的根,∴當時,,解得;當時,,解得,而,∴的值為.【點睛】本題考查了根的判別式:一元二次方程的根與有如下關系:當時,方程有兩個不相等的實數根;當時,方程有兩個相等的實數根;當時,方程無實數根.21、37【解析】試題分析:過點作交于點.構造直角三角形,在中,計算出,在中,計算出.試題解析:如圖所示:過點作交于點.

在中,

又∵在中,

答:的長度為22、【解析】

直接利用負指數冪的性質以及零指數冪的性質和特殊角的銳角三角函數值分別化簡,再

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論