2022年江西省贛州市南康區(qū)中考數(shù)學(xué)模擬試題含解析_第1頁
2022年江西省贛州市南康區(qū)中考數(shù)學(xué)模擬試題含解析_第2頁
2022年江西省贛州市南康區(qū)中考數(shù)學(xué)模擬試題含解析_第3頁
2022年江西省贛州市南康區(qū)中考數(shù)學(xué)模擬試題含解析_第4頁
2022年江西省贛州市南康區(qū)中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年江西省贛州市南康區(qū)中考數(shù)學(xué)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,二次函數(shù)y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x=1,且OA=OC.則下列結(jié)論:①abc>0;②9a+3b+c>0;③c>﹣1;④關(guān)于x的方程ax1+bx+c=0(a≠0)有一個(gè)根為﹣;⑤拋物線上有兩點(diǎn)P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結(jié)論有()A.1個(gè) B.3個(gè) C.4個(gè) D.5個(gè)2.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.63.如圖,由5個(gè)完全相同的小正方體組合成一個(gè)立體圖形,它的左視圖是()A. B. C. D.4.如圖,四邊形ABCD是平行四邊形,點(diǎn)E在BA的延長(zhǎng)線上,點(diǎn)F在BC的延長(zhǎng)線上,連接EF,分別交AD,CD于點(diǎn)G,H,則下列結(jié)論錯(cuò)誤的是()A. B. C. D.5.如圖所示,從☉O外一點(diǎn)A引圓的切線AB,切點(diǎn)為B,連接AO并延長(zhǎng)交圓于點(diǎn)C,連接BC,已知∠A=26°,則∠ACB的度數(shù)為()A.32° B.30° C.26° D.13°6.不論x、y為何值,用配方法可說明代數(shù)式x2+4y2+6x﹣4y+11的值()A.總不小于1B.總不小于11C.可為任何實(shí)數(shù)D.可能為負(fù)數(shù)7.若正多邊形的一個(gè)內(nèi)角是150°,則該正多邊形的邊數(shù)是()A.6B.12C.16D.188.一枚質(zhì)地均勻的骰子,其六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6,投擲一次,朝上一面的數(shù)字是偶數(shù)的概率為().A. B. C. D.9.一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數(shù)y2=2x+3(﹣1<x<2)的圖象記作G2,對(duì)于這兩個(gè)圖象,有以下幾種說法:①當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減小;②當(dāng)G1與G2沒有公共點(diǎn)時(shí),y1隨x增大而增大;③當(dāng)k=2時(shí),G1與G2平行,且平行線之間的距離為65下列選項(xiàng)中,描述準(zhǔn)確的是()A.①②正確,③錯(cuò)誤 B.①③正確,②錯(cuò)誤C.②③正確,①錯(cuò)誤 D.①②③都正確10.PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質(zhì),也稱為可入肺顆粒物,將25微米用科學(xué)記數(shù)法可表示為()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣5二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.我國(guó)經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長(zhǎng)各幾何?”題意是:有一正方形池塘,邊長(zhǎng)為一丈,有棵蘆葦長(zhǎng)在它的正中央,高出水面部分有一尺長(zhǎng),把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長(zhǎng)各是多少?(小知識(shí):1丈=10尺)如果設(shè)水深為x尺,則蘆葦長(zhǎng)用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.12.已知代數(shù)式2x﹣y的值是,則代數(shù)式﹣6x+3y﹣1的值是_____.13.在△ABC中,∠C=30°,∠A﹣∠B=30°,則∠A=_____.14.分解因式:x2y﹣xy2=_____.15.在△ABC中,若∠A,∠B滿足|cosA-|+(sinB-)2=0,則∠C=_________.16.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與軸相交于點(diǎn)A、B,若其對(duì)稱軸為直線x=2,則OB–OA的值為_______.三、解答題(共8題,共72分)17.(8分)一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為.()請(qǐng)直接寫出袋子中白球的個(gè)數(shù).()隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)18.(8分)6月14日是“世界獻(xiàn)血日”,某市采取自愿報(bào)名的方式組織市民義務(wù)獻(xiàn)血.獻(xiàn)血時(shí)要對(duì)獻(xiàn)血者的血型進(jìn)行檢測(cè),檢測(cè)結(jié)果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻(xiàn)血者人群中,隨機(jī)抽取了部分獻(xiàn)血者的血型結(jié)果進(jìn)行統(tǒng)計(jì),并根據(jù)這個(gè)統(tǒng)計(jì)結(jié)果制作了兩幅不完整的圖表:血型ABABO人數(shù)105(1)這次隨機(jī)抽取的獻(xiàn)血者人數(shù)為人,m=;補(bǔ)全上表中的數(shù)據(jù);若這次活動(dòng)中該市有3000人義務(wù)獻(xiàn)血,請(qǐng)你根據(jù)抽樣結(jié)果回答:從獻(xiàn)血者人群中任抽取一人,其血型是A型的概率是多少?并估計(jì)這3000人中大約有多少人是A型血?19.(8分)如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線,AD⊥CD于點(diǎn)D,E是AB延長(zhǎng)線上一點(diǎn),CE交⊙O于點(diǎn)F,連接OC、AC.(1)求證:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度數(shù);②若⊙O的半徑為2,求線段EF的長(zhǎng).20.(8分)如圖,在矩形ABCD的外側(cè),作等邊三角形ADE,連結(jié)BE,CE,求證:BE=CE.21.(8分)先化簡(jiǎn),再求值:(x﹣3)÷(﹣1),其中x=﹣1.22.(10分)正方形ABCD的邊長(zhǎng)是10,點(diǎn)E是AB的中點(diǎn),動(dòng)點(diǎn)F在邊BC上,且不與點(diǎn)B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運(yùn)動(dòng)過程中,線段AB′與EF有何位置關(guān)系?請(qǐng)證明你的結(jié)論.(2)如圖2,連接CB′,求△CB′F周長(zhǎng)的最小值.(3)如圖3,連接并延長(zhǎng)BB′,交AC于點(diǎn)P,當(dāng)BB′=6時(shí),求PB′的長(zhǎng)度.23.(12分)在一個(gè)不透明的口袋里裝有四個(gè)球,這四個(gè)球上分別標(biāo)記數(shù)字﹣3、﹣1、0、2,除數(shù)字不同外,這四個(gè)球沒有任何區(qū)別.從中任取一球,求該球上標(biāo)記的數(shù)字為正數(shù)的概率;從中任取兩球,將兩球上標(biāo)記的數(shù)字分別記為x、y,求點(diǎn)(x,y)位于第二象限的概率.24.如圖,在銳角△ABC中,小明進(jìn)行了如下的尺規(guī)作圖:①分別以點(diǎn)A、B為圓心,以大于12AB的長(zhǎng)為半徑作弧,兩弧分別相交于點(diǎn)P、Q②作直線PQ分別交邊AB、BC于點(diǎn)E、D.小明所求作的直線DE是線段AB的;聯(lián)結(jié)AD,AD=7,sin∠DAC=17,BC=9,求AC

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)拋物線的圖象與系數(shù)的關(guān)系即可求出答案.【詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點(diǎn)可知:c<0,由拋物線的對(duì)稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對(duì)稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當(dāng)x=﹣c時(shí),y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設(shè)關(guān)于x的方程ax1+bx+c=0(a≠0)有一個(gè)根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點(diǎn)分布在對(duì)稱軸的兩側(cè),∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對(duì)稱軸的距離小于x1到對(duì)稱軸的距離,∴y1>y1,故⑤正確.故選D.【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax1+bx+c系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.本題屬于中等題型.2、B【解析】

根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【點(diǎn)睛】考查了二次函數(shù)的最值,解題時(shí),利用配方法和非負(fù)數(shù)的性質(zhì)求得xy的最大值.3、B【解析】試題分析:從左面看易得第一層有2個(gè)正方形,第二層最左邊有一個(gè)正方形.故選B.考點(diǎn):簡(jiǎn)單組合體的三視圖.4、C【解析】試題解析:∵四邊形ABCD是平行四邊形,故選C.5、A【解析】

連接OB,根據(jù)切線的性質(zhì)和直角三角形的兩銳角互余求得∠AOB=64°,再由等腰三角形的性質(zhì)可得∠C=∠OBC,根據(jù)三角形外角的性質(zhì)即可求得∠ACB的度數(shù).【詳解】連接OB,∵AB與☉O相切于點(diǎn)B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故選A.【點(diǎn)睛】本題考查了切線的性質(zhì),利用切線的性質(zhì),結(jié)合三角形外角的性質(zhì)求出角的度數(shù)是解決本題的關(guān)鍵.6、A【解析】

利用配方法,根據(jù)非負(fù)數(shù)的性質(zhì)即可解決問題;【詳解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,

又∵(x+3)2≥0,(2y-1)2≥0,

∴x2+4y2+6x-4y+11≥1,

故選:A.【點(diǎn)睛】本題考查配方法的應(yīng)用,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握配方法.7、B【解析】設(shè)多邊形的邊數(shù)為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.8、B【解析】

朝上的數(shù)字為偶數(shù)的有3種可能,再根據(jù)概率公式即可計(jì)算.【詳解】依題意得P(朝上一面的數(shù)字是偶數(shù))=故選B.【點(diǎn)睛】此題主要考查概率的計(jì)算,解題的關(guān)鍵是熟知概率公式進(jìn)行求解.9、D【解析】

畫圖,找出G2的臨界點(diǎn),以及G1的臨界直線,分析出G1過定點(diǎn),根據(jù)k的正負(fù)與函數(shù)增減變化的關(guān)系,結(jié)合函數(shù)圖象逐個(gè)選項(xiàng)分析即可解答.【詳解】解:一次函數(shù)y2=2x+3(﹣1<x<2)的函數(shù)值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個(gè)臨界點(diǎn),易知一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象過定點(diǎn)M(2,1),直線MN與直線MQ為G1與G2有公共點(diǎn)的兩條臨界直線,從而當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減小;故①正確;當(dāng)G1與G2沒有公共點(diǎn)時(shí),分三種情況:一是直線MN,但此時(shí)k=0,不符合要求;二是直線MQ,但此時(shí)k不存在,與一次函數(shù)定義不符,故MQ不符合題意;三是當(dāng)k>0時(shí),此時(shí)y1隨x增大而增大,符合題意,故②正確;當(dāng)k=2時(shí),G1與G2平行正確,過點(diǎn)M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點(diǎn)睛】本題是一次函數(shù)中兩條直線相交或平行的綜合問題,需要數(shù)形結(jié)合,結(jié)合一次函數(shù)的性質(zhì)逐條分析解答,難度較大.10、B【解析】

由科學(xué)計(jì)數(shù)法的概念表示出0.0000025即可.【詳解】0.0000025=2.5×10﹣6.故選B.【點(diǎn)睛】本題主要考查科學(xué)計(jì)數(shù)法,熟記相關(guān)概念是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、(x+1);.【解析】試題分析:設(shè)水深為x尺,則蘆葦長(zhǎng)用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點(diǎn):由實(shí)際問題抽象出一元二次方程;勾股定理的應(yīng)用.12、【解析】

由題意可知:2x-y=,然后等式兩邊同時(shí)乘以-3得到-6x+3y=-,然后代入計(jì)算即可.【詳解】∵2x-y=,∴-6x+3y=-.∴原式=--1=-.故答案為-.【點(diǎn)睛】本題主要考查的是求代數(shù)式的值,利用等式的性質(zhì)求得-6x+3y=-是解題的關(guān)鍵.13、90°.【解析】

根據(jù)三角形內(nèi)角和得到∠A+∠B+∠C=180°,而∠C=30°,則可計(jì)算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把兩式相加消去∠B即可求得∠A的度數(shù).【詳解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案為:90°.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和是180°.主要用在求三角形中角的度數(shù).①直接根據(jù)兩已知角求第三個(gè)角;②依據(jù)三角形中角的關(guān)系,用代數(shù)方法求三個(gè)角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.14、xy(x﹣y)【解析】原式=xy(x﹣y).故答案為xy(x﹣y).15、75°【解析】【分析】根據(jù)絕對(duì)值及偶次方的非負(fù)性,可得出cosA及sinB的值,從而得出∠A及∠B的度數(shù),利用三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為:75°.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)值及非負(fù)數(shù)的性質(zhì),解答本題的關(guān)鍵是得出cosA及sinB的值,另外要求我們熟練掌握一些特殊角的三角函數(shù)值.16、4【解析】試題分析:設(shè)OB的長(zhǎng)度為x,則根據(jù)二次函數(shù)的對(duì)稱性可得:點(diǎn)B的坐標(biāo)為(x+2,0),點(diǎn)A的坐標(biāo)為(2-x,0),則OB-OA=x+2-(x-2)=4.點(diǎn)睛:本題主要考查的就是二次函數(shù)的性質(zhì).如果二次函數(shù)與x軸的兩個(gè)交點(diǎn)坐標(biāo)為(,0)和(,0),則函數(shù)的對(duì)稱軸為直線:x=.在解決二次函數(shù)的題目時(shí),我們一定要注意區(qū)分點(diǎn)的坐標(biāo)和線段的長(zhǎng)度之間的區(qū)別,如果點(diǎn)在x的正半軸,則點(diǎn)的橫坐標(biāo)就是線段的長(zhǎng)度,如果點(diǎn)在x的負(fù)半軸,則點(diǎn)的橫坐標(biāo)的相反數(shù)就是線段的長(zhǎng)度.三、解答題(共8題,共72分)17、(1)袋子中白球有2個(gè);(2).【解析】試題分析:(1)設(shè)袋子中白球有x個(gè),根據(jù)概率公式列方程解方程即可求得答案;(2)根據(jù)題意畫出樹狀圖,求得所有等可能的結(jié)果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.試題解析:(1)設(shè)袋子中白球有x個(gè),根據(jù)題意得:=,解得:x=2,經(jīng)檢驗(yàn),x=2是原分式方程的解,∴袋子中白球有2個(gè);(2)畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次都摸到相同顏色的小球的有5種情況,∴兩次都摸到相同顏色的小球的概率為:.考點(diǎn):列表法與樹狀圖法;概率公式.18、(1)50,20;(2)12,23;見圖;(3)大約有720人是A型血.【解析】【分析】(1)用AB型的人數(shù)除以它所占的百分比得到隨機(jī)抽取的獻(xiàn)血者的總?cè)藬?shù),然后用B型的人數(shù)除以抽取的總?cè)藬?shù)即可求得m的值;(2)先計(jì)算出O型的人數(shù),再計(jì)算出A型人數(shù),從而可補(bǔ)全上表中的數(shù)據(jù);(3)用樣本中A型的人數(shù)除以50得到血型是A型的概率,然后用3000乘以此概率可估計(jì)這3000人中是A型血的人數(shù).【詳解】(1)這次隨機(jī)抽取的獻(xiàn)血者人數(shù)為5÷10%=50(人),所以m=×100=20,故答案為50,20;(2)O型獻(xiàn)血的人數(shù)為46%×50=23(人),A型獻(xiàn)血的人數(shù)為50﹣10﹣5﹣23=12(人),補(bǔ)全表格中的數(shù)據(jù)如下:血型ABABO人數(shù)1210523故答案為12,23;(3)從獻(xiàn)血者人群中任抽取一人,其血型是A型的概率=,3000×=720,估計(jì)這3000人中大約有720人是A型血.【點(diǎn)睛】本題考查了扇形統(tǒng)計(jì)圖、統(tǒng)計(jì)表、概率公式、用樣本估計(jì)總體等,讀懂統(tǒng)計(jì)圖、統(tǒng)計(jì)表,從中找到必要的信息是解題的關(guān)鍵;隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)除以所有可能出現(xiàn)的結(jié)果數(shù).19、(1)證明見解析;(2)①∠OCE=45°;②EF=-2.【解析】【試題分析】(1)根據(jù)直線與⊙O相切的性質(zhì),得OC⊥CD.又因?yàn)锳D⊥CD,根據(jù)同一平面內(nèi),垂直于同一條直線的兩條直線也平行,得:AD//OC.∠DAC=∠OCA.又因?yàn)镺C=OA,根據(jù)等邊對(duì)等角,得∠OAC=∠OCA.等量代換得:∠DAC=∠OAC.根據(jù)角平分線的定義得:AC平分∠DAO.(2)①因?yàn)锳D//OC,∠DAO=105°,根據(jù)兩直線平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用內(nèi)角和定理,得:∠OCE=45°.②作OG⊥CE于點(diǎn)G,根據(jù)垂徑定理可得FG=CG,因?yàn)镺C=,∠OCE=45°.等腰直角三角形的斜邊是腰長(zhǎng)的倍,得CG=OG=2.FG=2.在Rt△OGE中,∠E=30°,得GE=,則EF=GE-FG=-2.【試題解析】(1)∵直線與⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于點(diǎn)G,可得FG=CG∵OC=,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=.∴EF=GE-FG=-2.【方法點(diǎn)睛】本題目是一道圓的綜合題目,涉及到圓的切線的性質(zhì),平行線的性質(zhì)及判定,三角形內(nèi)角和,垂徑定理,難度為中等.20、證明見解析.【解析】

要證明BE=CE,只要證明△EAB≌△EDC即可,根據(jù)題意目中的條件,利用矩形的性質(zhì)和等邊三角形的性質(zhì)可以得到兩個(gè)三角形全等的條件,從而可以解答本題.【詳解】證明:∵四邊形ABCD是矩形,∴AB=CD,∠BAD=∠CDA=90°,∵△ADE是等邊三角形,∴AE=DE,∠EAD=∠EDA=60°,∴∠EAD=∠EDC,在△EAB和△EDC中,EA=∴△EAB≌△EDC(SAS),∴BE=CE.【點(diǎn)睛】本題考查矩形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.21、﹣x+1,2.【解析】

先將括號(hào)內(nèi)的分式通分,再將乘方轉(zhuǎn)化為乘法,約分,最后代入數(shù)值求解即可.【詳解】原式=(x﹣2)÷(﹣)=(x﹣2)÷=(x﹣2)?=﹣x+1,當(dāng)x=﹣1時(shí),原式=1+1=2.【點(diǎn)睛】本題考查了整式的混合運(yùn)算-化簡(jiǎn)求值,解題的關(guān)鍵是熟練的掌握整式的混合運(yùn)算法則.22、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長(zhǎng)的最小值5+5;(3)PB′=.【解析】

(1)①當(dāng)△AEB′為等邊三角形時(shí),∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據(jù)AE=B′E,可得∠EAB′=∠EB′A,再根據(jù)∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進(jìn)而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據(jù)B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進(jìn)而得到B′C最小值為5﹣5,故△CB′F周長(zhǎng)的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長(zhǎng)MB、NP相交于點(diǎn)Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設(shè)PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據(jù)∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長(zhǎng)度.【詳解】(1)①當(dāng)△AEB′為等邊三角形時(shí),∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點(diǎn)E是AB的中點(diǎn),∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點(diǎn)B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長(zhǎng)的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長(zhǎng)MB、NP相交于點(diǎn)Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論