版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年福建省各市區(qū)中考數(shù)學全真模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.函數(shù)的圖像位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如圖,、是的切線,點在上運動,且不與,重合,是直徑.,當時,的度數(shù)是()A. B. C. D.3.某市2017年實現(xiàn)生產(chǎn)總值達280億的目標,用科學記數(shù)法表示“280億”為()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10104.如圖,在平面直角坐標系中,矩形ABOC的兩邊在坐標軸上,OB=1,點A在函數(shù)y=﹣(x<0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點A1在函數(shù)y=(x>0)的圖象上,C1O1與此圖象交于點P,則點P的縱坐標是()A. B. C. D.5.下列圖標中,是中心對稱圖形的是()A. B.C. D.6.如圖所示的四張撲克牌背面完全相同,洗勻后背面朝上,則從中任意翻開一張,牌面數(shù)字是3的倍數(shù)的概率為()A. B. C. D.7.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.8.﹣3的相反數(shù)是()A. B. C. D.9.如圖,在平面直角坐標系xOy中,菱形AOBC的一個頂點O在坐標原點,一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)y=在第一象限內的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于()A.30 B.40 C.60 D.8010.將1、、、按如圖方式排列,若規(guī)定(m、n)表示第m排從左向右第n個數(shù),則(6,5)與(13,6)表示的兩數(shù)之積是()A. B.6 C. D.11.正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數(shù)是()A.36° B.54° C.72° D.108°12.如圖圖形中,可以看作中心對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,DE∥BC,,則=_____.14.如圖,在△ABC中,AB=AC,AH⊥BC,垂足為點H,如果AH=BC,那么sin∠BAC的值是____.15.將一副三角尺如圖所示疊放在一起,則的值是.16.今年我市初中畢業(yè)暨升學統(tǒng)一考試的考生約有35300人,該數(shù)據(jù)用科學記數(shù)法表示為________人.17.拋物線y=ax2+bx+c的頂點為D(-1,2),與x軸的一個交點A在點(-3,1)和(-2,1)之間,其部分圖象如圖,則以下結論:①b2-4ac<1;②當x>-1時y隨x增大而減??;③a+b+c<1;④若方程ax2+bx+c-m=1沒有實數(shù)根,則m>2;
⑤3a+c<1.其中,正確結論的序號是________________.18.若點(a,b)在一次函數(shù)y=2x-3的圖象上,則代數(shù)式4a-2b-3的值是__________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,某校準備給長12米,寬8米的矩形室內場地進行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點為矩形和菱形的對稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過矩形面積的,若設米.甲乙丙單價(元/米2)(1)當時,求區(qū)域Ⅱ的面積.計劃在區(qū)域Ⅰ,Ⅱ分別鋪設甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設丙款白色瓷磚,①在相同光照條件下,當場地內白色區(qū)域的面積越大,室內光線亮度越好.當為多少時,室內光線亮度最好,并求此時白色區(qū)域的面積.②三種瓷磚的單價列表如下,均為正整數(shù),若當米時,購買三款瓷磚的總費用最少,且最少費用為7200元,此時__________,__________.20.(6分)如圖,已知反比例函數(shù)和一次函數(shù)的圖象相交于第一象限內的點A,且點A的橫坐標為1.過點A作AB⊥x軸于點B,△AOB的面積為1.求反比例函數(shù)和一次函數(shù)的解析式.若一次函數(shù)的圖象與x軸相交于點C,求∠ACO的度數(shù).結合圖象直接寫出:當>>0時,x的取值范圍.21.(6分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.22.(8分)如圖,△ABD是⊙O的內接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.23.(8分)如圖,方格紙中每個小正方形的邊長都是1個單位長度,在平面直角坐標系中的位置如圖所示.(1)直接寫出關于原點的中心對稱圖形各頂點坐標:________________________;(2)將繞B點逆時針旋轉,畫出旋轉后圖形.求在旋轉過程中所掃過的圖形的面積和點經(jīng)過的路徑長.24.(10分)如圖,AD是△ABC的中線,過點C作直線CF∥AD.(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應用)在探究的條件下,設PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.25.(10分)今年3月12日植樹節(jié)期間,學校預購進A、B兩種樹苗,若購進A種樹苗3棵,B種樹苗5棵,需2100元,若購進A種樹苗4棵,B種樹苗10棵,需3800元.(1)求購進A、B兩種樹苗的單價;(2)若該單位準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵?26.(12分)如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.(1)求雙曲線的解析式;(2)求點C的坐標,并直接寫出y1<y2時x的取值范圍.27.(12分)某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為元.①求關于的函數(shù)關系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)反比例函數(shù)中,當,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大,進而得出答案.【詳解】解:函數(shù)的圖象位于第四象限.故選:D.【點睛】此題主要考查了反比例函數(shù)的性質,正確記憶反比例函數(shù)圖象分布的象限是解題關鍵.2、B【解析】
連接OB,由切線的性質可得,由鄰補角相等和四邊形的內角和可得,再由圓周角定理求得,然后由平行線的性質即可求得.【詳解】解,連結OB,∵、是的切線,∴,,則,∵四邊形APBO的內角和為360°,即,∴,又∵,,∴,∵,∴,∵,∴,故選:B.【點睛】本題主要考查了切線的性質、圓周角定理、平行線的性質和四邊形的內角和,解題的關鍵是靈活運用有關定理和性質來分析解答.3、D【解析】
根據(jù)科學計數(shù)法的定義來表示數(shù)字,選出正確答案.【詳解】解:把一個數(shù)表示成a(1≤a<10,n為整數(shù))與10的冪相乘的形式,這種記數(shù)法叫做科學記數(shù)法,280億用科學計數(shù)法表示為2.8×1010,所以答案選D.【點睛】本題考查學生對科學計數(shù)法的概念的掌握和將數(shù)字用科學計數(shù)法表示的能力.4、C【解析】分析:先求出A點坐標,再根據(jù)圖形平移的性質得出A1點的坐標,故可得出反比例函數(shù)的解析式,把O1點的橫坐標代入即可得出結論.詳解:∵OB=1,AB⊥OB,點A在函數(shù)(x<0)的圖象上,∴當x=?1時,y=2,∴A(?1,2).∵此矩形向右平移3個單位長度到的位置,∴B1(2,0),∴A1(2,2).∵點A1在函數(shù)(x>0)的圖象上,∴k=4,∴反比例函數(shù)的解析式為,O1(3,0),∵C1O1⊥x軸,∴當x=3時,∴P故選C.點睛:考查反比例函數(shù)圖象上點的坐標特征,坐標與圖形變化-平移,解題的關鍵是運用雙曲線方程求出點A的坐標,利用平移的性質求出點A1的坐標.5、B【解析】
根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.6、C【解析】
根據(jù)題意確定所有情況的數(shù)目,再確定符合條件的數(shù)目,根據(jù)概率的計算公式即可.【詳解】解:由題意可知,共有4種情況,其中是3的倍數(shù)的有6和9,∴是3的倍數(shù)的概率,故答案為:C.【點睛】本題考查了概率的計算,解題的關鍵是熟知概率的計算公式.7、B【解析】
首先證明△ABF≌△DEA得到BF=AE;設AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質:正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質.會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.8、D【解析】
相反數(shù)的定義是:如果兩個數(shù)只有符號不同,我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),特別地,1的相反數(shù)還是1.【詳解】根據(jù)相反數(shù)的定義可得:-3的相反數(shù)是3.故選D.【點睛】本題考查相反數(shù),題目簡單,熟記定義是關鍵.9、B【解析】
過點A作AM⊥x軸于點M,設OA=a,通過解直角三角形找出點A的坐標,結合反比例函數(shù)圖象上點的坐標特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結合菱形的面積公式即可得出結論.【詳解】過點A作AM⊥x軸于點M,如圖所示.設OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點A的坐標為(a,a).∵點A在反比例函數(shù)y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點睛】本題考查了菱形的性質、解直角三角形以及反比例函數(shù)圖象上點的坐標特征,解題的關鍵是找出S△AOF=S菱形OBCA.10、B【解析】
根據(jù)數(shù)的排列方法可知,第一排:1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列方法,每四個數(shù)一個輪回,根據(jù)題目意思找出第m排第n個數(shù)到底是哪個數(shù)后再計算.【詳解】第一排1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列方法,每四個數(shù)一個輪回,由此可知:(1,5)表示第1排從左向右第5個數(shù)是,(13,1)表示第13排從左向右第1個數(shù),可以看出奇數(shù)排最中間的一個數(shù)都是1,第13排是奇數(shù)排,最中間的也就是這排的第7個數(shù)是1,那么第1個就是,則(1,5)與(13,1)表示的兩數(shù)之積是1.故選B.11、C【解析】正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數(shù)是=72度,故選C.12、D【解析】
根據(jù)把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【詳解】解:A、不是中心對稱圖形,故此選項不合題意;B、不是中心對稱圖形,故此選項不合題意;C、不是中心對稱圖形,故此選項不合題意;D、是中心對稱圖形,故此選項符合題意;故選D.【點睛】此題主要考查了中心對稱圖形,關鍵掌握中心對稱圖形定義.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
先利用平行條件證明三角形的相似,再利用相似三角形面積比等于相似比的平方,即可解題.【詳解】解:∵DE∥BC,,∴,由平行條件易證△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【點睛】本題考查了相似三角形的判定和性質,中等難度,熟記相似三角形的面積比等于相似比的平方是解題關鍵.14、【解析】
過點B作BD⊥AC于D,設AH=BC=2x,根據(jù)等腰三角形三線合一的性質可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根據(jù)三角形的面積列方程求出BD,然后根據(jù)銳角的正弦=對邊:斜邊求解即可.【詳解】如圖,過點B作BD⊥AC于D,設AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根據(jù)勾股定理得,AC==x,S△ABC=BC?AH=AC?BD,即?2x?2x=?x?BD,解得BC=x,所以,sin∠BAC=.故答案為.15、【解析】試題分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.16、3.53×104【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù),35300=3.53×104,故答案為:3.53×104.17、②③④⑤【解析】試題解析:∵二次函數(shù)與x軸有兩個交點,∴b2-4ac>1,故①錯誤,觀察圖象可知:當x>-1時,y隨x增大而減小,故②正確,∵拋物線與x軸的另一個交點為在(1,1)和(1,1)之間,∴x=1時,y=a+b+c<1,故③正確,∵當m>2時,拋物線與直線y=m沒有交點,∴方程ax2+bx+c-m=1沒有實數(shù)根,故④正確,∵對稱軸x=-1=-,∴b=2a,∵a+b+c<1,∴3a+c<1,故⑤正確,故答案為②③④⑤.18、1【解析】
根據(jù)題意,將點(a,b)代入函數(shù)解析式即可求得2a-b的值,變形即可求得所求式子的值.【詳解】∵點(a,b)在一次函數(shù)y=2x-1的圖象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案為:1.【點睛】本題考查一次函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,利用一次函數(shù)的性質解答.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)8m2;(2)68m2;(3)40,8【解析】
(1)根據(jù)中心對稱圖形性質和,,,可得,即可解當時,4個全等直角三角形的面積;(2)白色區(qū)域面積即是矩形面積減去一二部分的面積,分別用含x的代數(shù)式表示出菱形和四個全等直角三角形的面積,列出含有x的解析式表示白色區(qū)域面積,并化成頂點式,根據(jù),,,求出自變量的取值范圍,再根據(jù)二次函數(shù)的增減性即可解答;(3)計算出x=2時各部分面積以及用含m、n的代數(shù)式表示出費用,因為m,n均為正整數(shù),解得m=40,n=8.【詳解】(1)∵為長方形和菱形的對稱中心,,∴∵,,∴∴當時,,(2)∵,∴-,∵,,∴解不等式組得,∵,結合圖像,當時,隨的增大而減小.∴當時,取得最大值為(3)∵當時,SⅠ=4x2=16m2,=12m2,=68m2,總費用:16×2m+12×5n+68×2m=7200,化簡得:5n+14m=600,因為m,n均為正整數(shù),解得m=40,n=8.【點睛】本題考查中心對稱圖形性質,菱形、直角三角形的面積計算,二次函數(shù)的最值問題,解題關鍵是用含x的二次函數(shù)解析式表示出白色區(qū)面積.20、(1)y=;y=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】
(1)根據(jù)△AOB的面積可求AB,得A點坐標.從而易求兩個函數(shù)的解析式;(2)求出C點坐標,在△ABC中運用三角函數(shù)可求∠ACO的度數(shù);(3)觀察第一象限內的圖形,反比例函數(shù)的圖象在一次函數(shù)的圖象的上面部分對應的x的值即為取值范圍.【詳解】(1)∵△AOB的面積為1,并且點A在第一象限,∴k=2,∴y=;∵點A的橫坐標為1,∴A(1,2).把A(1,2)代入y=ax+1得,a=1.∴y=x+1.(2)令y=0,0=x+1,∴x=?1,∴C(?1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由圖象可知,在第一象限,當y>y>0時,0<x<1.在第三象限,當y>y>0時,?1<x<0(舍去).【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵在于結合函數(shù)圖象進行解答.21、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)矩形的性質得到AB=CD,∠B=∠D=90°,根據(jù)折疊的性質得到∠E=∠B,AB=AE,根據(jù)全等三角形的判定定理即可得到結論;(2)根據(jù)全等三角形的性質得到AF=CF,EF=DF,根據(jù)勾股定理得到DF=3,根據(jù)三角形的面積公式即可得到結論.試題解析:(1)∵四邊形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵將矩形ABCD沿對角線AC翻折,點B落在點E處,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF與△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴圖中陰影部分的面積=S△ACE﹣S△AEF=×4×8﹣×4×3=1.點睛:本題考查了翻折變換﹣折疊的性質,熟練掌握折疊的性質是解題的關鍵.22、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關鍵在于清楚角度的轉換方式和弦長的計算方法.23、(1),,;(2)作圖見解析,面積,.【解析】
(1)由在平面直角坐標系中的位置可得A、B、C的坐標,根據(jù)關于原點對稱的點的坐標特點即可得、、的坐標;(2)由旋轉的性質可畫出旋轉后圖形,利用面積的和差計算出,然后根據(jù)扇形的面積公式求出,利用旋轉過程中掃過的面積進行計算即可.再利用弧長公式求出點C所經(jīng)過的路徑長.【詳解】解:(1)由在平面直角坐標系中的位置可得:,,,∵與關于原點對稱,∴,,(2)如圖所示,即為所求,∵,,∴,∴,∵,∴在旋轉過程中所掃過的面積:點所經(jīng)過的路徑:.【點睛】本題考查的是圖形的旋轉、及扇形面積和扇形弧長的計算,根據(jù)已知得出對應點位置,作出圖形是解題的關鍵.24、【問題】:詳見解析;【探究】:四邊形ABPE是平行四邊形,理由詳見解析;【應用】:8.【解析】
(1)先根據(jù)平行線的性質和等量代換得出∠1=∠3,再利用中線性質得到BD=DC,證明△ABD≌△EDC,從而證明AB=DE(2)方法一:過點D作DN∥PE交直線CF于點N,由平行線性質得出四邊形PDNE是平行四邊形,從而得到四邊形ABPE是平行四邊形.方法二:延長BP交直線CF于點N,根據(jù)平行線的性質結合等量代換證明△ABP≌△EPN,從而證明四邊形ABPE是平行四邊形(3)延長BP交CF于H,根據(jù)平行四邊形的性質結合三角形的面積公式求解即可.【詳解】證明:如圖①是的中線,(或證明四邊形ABDE是平行四邊形,從而得到)【探究】四邊形ABPE是平行四邊形.方法一:如圖②,證明:過點D作交直線于點,∴四邊形是平行四邊形,∵由問題結論可得∴四邊形是平行四邊形.方法二:如圖③,證明:延長BP交直線CF于點N,∵是的中線,∴四邊形是平行四邊形.【應用】如圖④,延長BP交CF于H.由上面可知,四邊形是平行四邊形,∴四邊形APHE是平行四邊形,,【點睛】此題重點考查學生對平行線性質,平行四邊形性質的綜合應用能力,熟練掌握平行線的性質是解題的關鍵.25、(1)購進A種樹苗的單價為200元/棵,購進B種樹苗的單價為300元/棵(2)A種樹苗至少需購進1棵【解析】
(1)設購進A種樹苗的單價為x元/棵,購進B種樹苗的單價為y元/棵,根據(jù)“若購進A種樹苗3棵,B種樹苗5棵,需210元,若購進A種樹苗4棵,B種樹苗1棵,需3800元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;
(2)設需購進A種樹苗a棵,則購進B種樹苗(30-a)棵,根據(jù)總價=單價×購買數(shù)量結合購買兩種樹苗的總費用不多于8000元,即可得出關于a的一元一次不等式,解之取其中的最小值即可得出結論.【詳解】設購進A種樹苗的單價為x元/棵,購進B種樹苗的單價為y元/棵,根據(jù)題意得:3x+5y=21004x+10y=3800解得:x=200y=300答:購進A種樹苗的單價為200元/棵,購進B種樹苗的單價為300元/棵.(2)設需購進A種樹苗a棵,則購
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市小區(qū)地下車位及儲藏室買賣協(xié)議樣本版
- 2024年招聘程序與義務明細合同
- 2024年專業(yè)服務移交協(xié)議格式版
- 2024年度工程承包協(xié)議模板
- 砂管紙市場環(huán)境與對策分析
- 2024年沙土買賣標準協(xié)議版
- 真空包裝機項目可行性實施報告
- 碧璽相關項目實施方案
- 滑板相關項目建議書
- 工業(yè)自動化設備操作培訓手冊
- 自然辯證法概論-北京化工大學中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 腦出血合并深靜脈血栓的護理
- 2023醫(yī)院反恐防暴應急演練腳本
- 2023年高考語文 真題新課標I卷現(xiàn)代文閱讀II《給兒子》小說精讀范讀
- 2023學年完整公開課版《花巴掌》
- 2023年生活飲用水衛(wèi)生知識競賽題
- 常見傳染病課件完整版
- 耳鼻咽喉-頭頸外科學:頸部腫塊
- 脊髓亞急性聯(lián)合變性新版培訓課件
- 2023年江蘇省國信集團有限公司招聘筆試題庫及答案解析
- YS/T 1022-2015偏釩酸銨
評論
0/150
提交評論