2022年江蘇省江陰市長涇片市級(jí)名校中考數(shù)學(xué)五模試卷含解析_第1頁
2022年江蘇省江陰市長涇片市級(jí)名校中考數(shù)學(xué)五模試卷含解析_第2頁
2022年江蘇省江陰市長涇片市級(jí)名校中考數(shù)學(xué)五模試卷含解析_第3頁
2022年江蘇省江陰市長涇片市級(jí)名校中考數(shù)學(xué)五模試卷含解析_第4頁
2022年江蘇省江陰市長涇片市級(jí)名校中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年江蘇省江陰市長涇片市級(jí)名校中考數(shù)學(xué)五模試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.把拋物線y=﹣2x2向上平移1個(gè)單位,再向右平移1個(gè)單位,得到的拋物線是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣12.已知一個(gè)布袋里裝有2個(gè)紅球,3個(gè)白球和a個(gè)黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個(gè)球,是紅球的概率為,則a等于()A. B. C. D.3.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點(diǎn)落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.4.若是關(guān)于x的方程的一個(gè)根,則方程的另一個(gè)根是()A.9 B.4 C.4 D.35.下列安全標(biāo)志圖中,是中心對稱圖形的是()A. B. C. D.6.如圖,若數(shù)軸上的點(diǎn)A,B分別與實(shí)數(shù)﹣1,1對應(yīng),用圓規(guī)在數(shù)軸上畫點(diǎn)C,則與點(diǎn)C對應(yīng)的實(shí)數(shù)是()A.2 B.3 C.4 D.57.計(jì)算的正確結(jié)果是()A. B.- C.1 D.﹣18.《九章算術(shù)》中有這樣一個(gè)問題:“今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50,問甲、乙各有多少錢?設(shè)甲的錢數(shù)為x,乙的錢數(shù)為y,則列方程組為()A. B.C. D.9.在Rt△ABC中,∠C=90°,AC=5,AB=13,則sinA的值為()A.512 B.513 C.1210.下列各組數(shù)中,互為相反數(shù)的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|11.如圖,數(shù)軸上有A,B,C,D四個(gè)點(diǎn),其中表示互為倒數(shù)的點(diǎn)是()A.點(diǎn)A與點(diǎn)B B.點(diǎn)A與點(diǎn)D C.點(diǎn)B與點(diǎn)D D.點(diǎn)B與點(diǎn)C12.下列運(yùn)算結(jié)果正確的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.a(chǎn)(a+b)=a2+bD.6ab2÷2ab=3b二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.同圓中,已知弧AB所對的圓心角是100°,則弧AB所對的圓周角是_____.14.一個(gè)盒子內(nèi)裝有大小、形狀相同的四個(gè)球,其中紅球1個(gè)、綠球1個(gè)、白球2個(gè),小明摸出一個(gè)球不放回,再摸出一個(gè)球,則兩次都摸到白球的概率是_______.15.工人師傅常用角尺平分一個(gè)任意角.做法如下:如圖,∠AOB是一個(gè)任意角,在邊OA,OB上分別取OM=ON,移動(dòng)角尺,使角尺兩邊相同的刻度分別與M,N重合.過角尺頂點(diǎn)C的射線OC即是∠AOB的平分線.做法中用到全等三角形判定的依據(jù)是______.16.已知一次函數(shù)y=ax+b,且2a+b=1,則該一次函數(shù)圖象必經(jīng)過點(diǎn)_____.17.在平面直角坐標(biāo)系內(nèi),一次函數(shù)與的圖像之間的距離為3,則b的值為__________.18.若正六邊形的邊長為2,則此正六邊形的邊心距為______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)解不等式組:,并把解集在數(shù)軸上表示出來.20.(6分)動(dòng)畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.(1)姐姐從中隨機(jī)抽取一張卡片,恰好抽到A佩奇的概率為;(2)若兩人分別隨機(jī)抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.21.(6分)為了計(jì)算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點(diǎn)A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點(diǎn)B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)22.(8分)在平面直角坐標(biāo)系xOy中,函數(shù)(x>0)的圖象與直線l1:y=x+b交于點(diǎn)A(3,a-2).(1)求a,b的值;(2)直線l2:y=-x+m與x軸交于點(diǎn)B,與直線l1交于點(diǎn)C,若S△ABC≥6,求m的取值范圍.23.(8分)(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請直接寫出BD'平方的值.24.(10分)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(n≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.求該反比例函數(shù)和一次函數(shù)的解析式;求△AOB的面積;點(diǎn)E是x軸上一點(diǎn),且△AOE是等腰三角形,請直接寫出所有符合條件的E點(diǎn)的坐標(biāo).25.(10分)某海域有A、B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求:(1)∠C=°;(2)此時(shí)刻船與B港口之間的距離CB的長(結(jié)果保留根號(hào)).26.(12分)如圖,點(diǎn)A.F、C.D在同一直線上,點(diǎn)B和點(diǎn)E分別在直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.(1)求證:四邊形BCEF是平行四邊形,(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時(shí),四邊形BCEF是菱形.27.(12分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C.(1)當(dāng)A(﹣1,0),C(0,﹣3)時(shí),求拋物線的解析式和頂點(diǎn)坐標(biāo);(2)P(m,t)為拋物線上的一個(gè)動(dòng)點(diǎn).①當(dāng)點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)P′落在直線BC上時(shí),求m的值;②當(dāng)點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)P′落在第一象限內(nèi),P′A2取得最小值時(shí),求m的值及這個(gè)最小值.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

∵函數(shù)y=-2x2的頂點(diǎn)為(0,0),∴向上平移1個(gè)單位,再向右平移1個(gè)單位的頂點(diǎn)為(1,1),∴將函數(shù)y=-2x2的圖象向上平移1個(gè)單位,再向右平移1個(gè)單位,得到拋物線的解析式為y=-2(x-1)2+1,故選B.【點(diǎn)睛】二次函數(shù)的平移不改變二次項(xiàng)的系數(shù);關(guān)鍵是根據(jù)上下平移改變頂點(diǎn)的縱坐標(biāo),左右平移改變頂點(diǎn)的橫坐標(biāo)得到新拋物線的頂點(diǎn).2、A【解析】

此題考查了概率公式的應(yīng)用.注意用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.根據(jù)題意得:,解得:a=1,經(jīng)檢驗(yàn),a=1是原分式方程的解,故本題選A.3、A【解析】

首先利用勾股定理計(jì)算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【詳解】∵AB=3,AD=4,∴DC=3∴根據(jù)勾股定理得AC=5根據(jù)折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.4、D【解析】

解:設(shè)方程的另一個(gè)根為a,由一元二次方程根與系數(shù)的故選可得,解得a=,故選D.5、B【解析】試題分析:A.不是中心對稱圖形,故此選項(xiàng)不合題意;B.是中心對稱圖形,故此選項(xiàng)符合題意;C.不是中心對稱圖形,故此選項(xiàng)不符合題意;D.不是中心對稱圖形,故此選項(xiàng)不合題意;故選B.考點(diǎn):中心對稱圖形.6、B【解析】

由數(shù)軸上的點(diǎn)A、B分別與實(shí)數(shù)﹣1,1對應(yīng),即可求得AB=2,再根據(jù)半徑相等得到BC=2,由此即求得點(diǎn)C對應(yīng)的實(shí)數(shù).【詳解】∵數(shù)軸上的點(diǎn)A,B分別與實(shí)數(shù)﹣1,1對應(yīng),∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點(diǎn)C對應(yīng)的實(shí)數(shù)是:1+2=3.故選B.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸,熟記實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對應(yīng)的關(guān)系是解決本題的關(guān)鍵.7、D【解析】

根據(jù)有理數(shù)加法的運(yùn)算方法,求出算式的正確結(jié)果是多少即可.【詳解】原式故選:D.【點(diǎn)睛】此題主要考查了有理數(shù)的加法的運(yùn)算方法,要熟練掌握,解答此題的關(guān)鍵是要明確:①同號(hào)相加,取相同符號(hào),并把絕對值相加.②絕對值不等的異號(hào)加減,取絕對值較大的加數(shù)符號(hào),并用較大的絕對值減去較小的絕對值.互為相反數(shù)的兩個(gè)數(shù)相加得1.③一個(gè)數(shù)同1相加,仍得這個(gè)數(shù).8、A【解析】

設(shè)甲的錢數(shù)為x,人數(shù)為y,根據(jù)“若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50”,即可得出關(guān)于x,y的二元一次方程組,此題得解.【詳解】解:設(shè)甲的錢數(shù)為x,乙的錢數(shù)為y,依題意,得:.故選A.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出二元一次方程組,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.9、C【解析】

先根據(jù)勾股定理求出BC得長,再根據(jù)銳角三角函數(shù)正弦的定義解答即可.【詳解】如圖,根據(jù)勾股定理得,BC=AB∴sinA=BCAB故選C.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義及勾股定理,熟知銳角三角函數(shù)正弦的定義是解決問題的關(guān)鍵.10、A【解析】

根據(jù)相反數(shù)的定義,對每個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數(shù),正確;B、(﹣1)2=1,故錯(cuò)誤;C、2與互為倒數(shù),故錯(cuò)誤;D、2=|﹣2|,故錯(cuò)誤;故選:A.【點(diǎn)睛】本題考查了相反數(shù)的定義,解題的關(guān)鍵是掌握相反數(shù)的定義.11、A【解析】

試題分析:主要考查倒數(shù)的定義和數(shù)軸,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負(fù)數(shù)的倒數(shù)還是負(fù)數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).根據(jù)倒數(shù)定義可知,-2的倒數(shù)是-,有數(shù)軸可知A對應(yīng)的數(shù)為-2,B對應(yīng)的數(shù)為-,所以A與B是互為倒數(shù).故選A.考點(diǎn):1.倒數(shù)的定義;2.?dāng)?shù)軸.12、D【解析】

各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.【詳解】解:A、原式=2a,不符合題意;

B、原式=a2-2ab+b2,不符合題意;

C、原式=a2+ab,不符合題意;D、原式=3b,符合題意;

故選D【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、50°【解析】【分析】直接利用圓周角定理進(jìn)行求解即可.【詳解】∵弧AB所對的圓心角是100°,∴弧AB所對的圓周角為50°,故答案為:50°.【點(diǎn)睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.14、【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次都摸到白球的情況,再利用概率公式即可求得答案.【詳解】畫樹狀圖得:

∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,

∴兩次都摸到白球的概率是:=.

故答案為:.【點(diǎn)睛】本題考查用樹狀圖法求概率,解題的關(guān)鍵是掌握用樹狀圖法求概率.15、SSS.【解析】

由三邊相等得△COM≌△CON,即由SSS判定三角全等.做題時(shí)要根據(jù)已知條件結(jié)合判定方法逐個(gè)驗(yàn)證.【詳解】由圖可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分線.故答案為:SSS.【點(diǎn)睛】本題考查了全等三角形的判定及性質(zhì).要熟練掌握確定三角形的判定方法,利用數(shù)學(xué)知識(shí)解決實(shí)際問題是一種重要的能力,要注意培養(yǎng).16、(2,1)【解析】∵一次函數(shù)y=ax+b,∴當(dāng)x=2,y=2a+b,又2a+b=1,∴當(dāng)x=2,y=1,即該圖象一定經(jīng)過點(diǎn)(2,1).故答案為(2,1).17、或【解析】

設(shè)直線y=2x-1與x軸交點(diǎn)為C,與y軸交點(diǎn)為A,過點(diǎn)A作AD⊥直線y=2x-b于點(diǎn)D,根據(jù)直線的解析式找出點(diǎn)A、B、C的坐標(biāo),通過同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直線AB的長度,從而得出關(guān)于b的含絕對值符號(hào)的方程,解方程即可得出結(jié)論.【詳解】解:設(shè)直線y=2x-1與x軸交點(diǎn)為C,與y軸交點(diǎn)為A,過點(diǎn)A作AD⊥直線y=2x-b于點(diǎn)D,如圖所示.

∵直線y=2x-1與x軸交點(diǎn)為C,與y軸交點(diǎn)為A,

∴點(diǎn)A(0,-1),點(diǎn)C(,0),

∴OA=1,OC=,AC==,

∴cos∠ACO==.

∵∠BAD與∠CAO互余,∠ACO與∠CAO互余,

∴∠BAD=∠ACO.

∵AD=3,cos∠BAD==,

∴AB=3.

∵直線y=2x-b與y軸的交點(diǎn)為B(0,-b),

∴AB=|-b-(-1)|=3,

解得:b=1-3或b=1+3.

故答案為1+3或1-3.【點(diǎn)睛】本題考查兩條直線相交與平行的問題,利用平行線間的距離轉(zhuǎn)化成點(diǎn)到直線的距離得出關(guān)于b的方程是解題關(guān)鍵.18、.【解析】

連接OA、OB,根據(jù)正六邊形的性質(zhì)求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據(jù)勾股定理求出即可.【詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、x≥【解析】分析:分別求解兩個(gè)不等式,然后按照不等式的確定方法求解出不等式組的解集,然后表示在數(shù)軸上即可.詳解:,由①得,x>﹣2;由②得,x≥,故此不等式組的解集為:x≥.在數(shù)軸上表示為:.點(diǎn)睛:本題考查的是解一元一次不等式組,正確求出每一個(gè)不等式解集是基礎(chǔ),熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.20、(1);(2)【解析】

(1)直接利用求概率公式計(jì)算即可;(2)畫樹狀圖(或列表格)列出所有等可能結(jié)果,根據(jù)概率公式即可解答.【詳解】(1);(2)方法1:根據(jù)題意可畫樹狀圖如下:方法2:根據(jù)題意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(樹狀圖)可知,總共有12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B喬治的結(jié)果有1種:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B喬治)【點(diǎn)睛】本題考查的是用列表法或樹狀圖法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解決問題用到概率公式:概率=所求情況數(shù)與總情況數(shù)之比.21、涼亭P到公路l的距離為273.2m.【解析】

分析:作PD⊥AB于D,構(gòu)造出Rt△APD與Rt△BPD,根據(jù)AB的長度.利用特殊角的三角函數(shù)值求解.【詳解】詳解:作PD⊥AB于D.設(shè)BD=x,則AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°?AD,即DB=PD=tan30°?AD=x=(1+x),解得:x≈273.2,∴PD=273.2.答:涼亭P到公路l的距離為273.2m.【點(diǎn)睛】此題考查的是直角三角形的性質(zhì),解答此題的關(guān)鍵是構(gòu)造出兩個(gè)特殊角度的直角三角形,再利用特殊角的三角函數(shù)值解答.22、(1)a=3,b=-2;(2)m≥8或m≤-2【解析】

(1)把A點(diǎn)坐標(biāo)代入反比例解析式確定出a的值,確定出A坐標(biāo),代入一次函數(shù)解析式求出b的值;(2)分別求出直線l1與x軸交于點(diǎn)D,再求出直線l2與x軸交于點(diǎn)B,從而得出直線l2與直線l1交于點(diǎn)C坐標(biāo),分兩種情況進(jìn)行討論:①當(dāng)S△ABC=S△BCD+S△ABD=6時(shí),利用三角形的面積求出m的值,②當(dāng)S△ABC=S△BCD?S△ABD=6時(shí),利用三角形的面積求出m的值,從而得出m的取值范圍.【詳解】(1)∵點(diǎn)A在圖象上∴∴a=3∴A(3,1)∵點(diǎn)A在y=x+b圖象上∴1=3+b∴b=-2∴解析式y(tǒng)=x-2(2)設(shè)直線y=x-2與x軸的交點(diǎn)為D∴D(2,0)①當(dāng)點(diǎn)C在點(diǎn)A的上方如圖(1)∵直線y=-x+m與x軸交點(diǎn)為B∴B(m,0)(m>3)∵直線y=-x+m與直線y=x-2相交于點(diǎn)C∴解得:∴C∵S△ABC=S△BCD-S△ABD≥6∴∴m≥8②若點(diǎn)C在點(diǎn)A下方如圖2∵S△ABC=S△BCD+S△ABD≥6∴∴m≤-2綜上所述,m≥8或m≤-2【點(diǎn)睛】此題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,三角形的面積,利用了數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.23、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】

(1)依據(jù)點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進(jìn)而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【詳解】(1)∵AB=AD,CB=CD,∴點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,如圖所示:過B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點(diǎn)睛】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運(yùn)用,解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形,依據(jù)勾股定理進(jìn)行計(jì)算求解.解題時(shí)注意:有三個(gè)角是直角的四邊形是矩形.24、(1)y=﹣,y=﹣x+2;(2)6;(3)當(dāng)點(diǎn)E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時(shí),△AOE是等腰三角形.【解析】

(1)利用待定系數(shù)法,即可得到反比例函數(shù)和一次函數(shù)的解析式;(2)利用一次函數(shù)解析式求得C(4,0),即OC=4,即可得出△AOB的面積=×4×3=6;(3)分類討論:當(dāng)AO為等腰三角形腰與底時(shí),求出點(diǎn)E坐標(biāo)即可.【詳解】(1)如圖,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考點(diǎn):n=3×(﹣2)=﹣6,所以反比例函數(shù)解析式為:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分別代入y=kx+b,得:,解得:,所以一次函數(shù)解析式為:y=﹣x+2;(2)當(dāng)y=0時(shí),﹣x+2=0,解得:x=4,則C(4,0),所以;(3)當(dāng)OE3=OE2=AO=,即E2(﹣,0),E3(,0);當(dāng)OA=AE1=時(shí),得到OE1=2OD=4,即E1(﹣4,0);當(dāng)AE4=OE4時(shí),由A(﹣2,3),O(0,0),得到直線AO解析式為y=﹣x,中點(diǎn)坐標(biāo)為(﹣1,1.5),令y=0,得到y(tǒng)=﹣,即E4(﹣,0),綜上,當(dāng)點(diǎn)E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時(shí),△AOE是等腰三角形.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,熟練掌握各自的性質(zhì)是解題的關(guān)鍵.25、(1)60;(2)【解析】(1)由平行線的性質(zhì)以及方向角的定義得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根據(jù)方向角的定義得出∠BAC=∠BAE+∠CAE=75°,利用三角形內(nèi)角和定理求出∠C=60°;(2)作AD⊥BC交BC于點(diǎn)D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根據(jù)BC=BD+CD即可求解.解:(1)如圖所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案為60;(2)如圖,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴AD=BD=30.在Rt△ACD中,∵∠C=60°,AD=30,∴tanC=,∴CD==10,∴BC=BD+CD=30+10.答:該船與B港口之間的距離CB的長為(30+10)海里.26、(1)見解析(2)當(dāng)AF=時(shí),四邊形BCEF是菱形.【解析】

(1)由AB=DE,∠A=∠D,AF=DC,根據(jù)SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四邊形BCEF是平行四邊形.(2)由四邊形BCEF是平行四邊形,可得當(dāng)BE⊥CF時(shí),四邊形BCEF是菱形,所以連接BE,交CF與點(diǎn)G,證得△ABC∽△BGC,由相似三角形的對應(yīng)邊成比例,即可求得AF的值.【詳解】(1)證明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四邊形BCEF是平行四邊形.(2)解:連接BE,交CF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論