版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022年廣東省陽江市江城區(qū)市級名校十校聯(lián)考最后數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.設(shè)0<k<2,關(guān)于x的一次函數(shù)y=(k-2)x+2,當(dāng)1≤x≤2時,y的最小值是()A.2k-2B.k-1C.kD.k+12.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.3.已知常數(shù)k<0,b>0,則函數(shù)y=kx+b,的圖象大致是下圖中的()A. B.C. D.4.如圖,在△ABC中,DE∥BC交AB于D,交AC于E,錯誤的結(jié)論是(
).A. B. C. D.5.當(dāng)x=1時,代數(shù)式x3+x+m的值是7,則當(dāng)x=﹣1時,這個代數(shù)式的值是()A.7 B.3 C.1 D.﹣76.下列說法不正確的是()A.某種彩票中獎的概率是,買1000張該種彩票一定會中獎B.了解一批電視機的使用壽命適合用抽樣調(diào)查C.若甲組數(shù)據(jù)的標(biāo)準(zhǔn)差S甲=0.31,乙組數(shù)據(jù)的標(biāo)準(zhǔn)差S乙=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定D.在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件7.如圖,△ABC中AB兩個頂點在x軸的上方,點C的坐標(biāo)是(﹣1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C′,且△A′B′C′與△ABC的位似比為2:1.設(shè)點B的對應(yīng)點B′的橫坐標(biāo)是a,則點B的橫坐標(biāo)是()A. B. C. D.8.關(guān)于反比例函數(shù)y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(a,b)在它的圖象上,則點(b,a)也在它的圖象上9.若矩形的長和寬是方程x2-7x+12=0的兩根,則矩形的對角線長度為()A.5 B.7 C.8 D.1010.若x,y的值均擴大為原來的3倍,則下列分式的值保持不變的是()A. B. C. D.11.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達(dá)C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.112.如圖是由兩個小正方體和一個圓錐體組成的立體圖形,其主視圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知點(﹣1,m)、(2,n)在二次函數(shù)y=ax2﹣2ax﹣1的圖象上,如果m>n,那么a____0(用“>”或“<”連接).14.如圖所示是一組有規(guī)律的圖案,第l個圖案由4個基礎(chǔ)圖形組成,第2個圖案由7個基礎(chǔ)圖形組成,……,第n(n是正整數(shù))個圖案中的基礎(chǔ)圖形個數(shù)為_______(用含n的式子表示).15.如圖,在矩形ABCD中,E是AD上一點,把△ABE沿直線BE翻折,點A正好落在BC邊上的點F處,如果四邊形CDEF和矩形ABCD相似,那么四邊形CDEF和矩形ABCD面積比是__.16.在△ABC中,∠ABC<20°,三邊長分別為a,b,c,將△ABC沿直線BA翻折,得到△ABC1;然后將△ABC1沿直線BC1翻折,得到△A1BC1;再將△A1BC1沿直線A1B翻折,得到△A1BC2;…,若翻折4次后,得到圖形A2BCAC1A1C2的周長為a+c+5b,則翻折11次后,所得圖形的周長為_____________.(結(jié)果用含有a,b,c的式子表示)17.如果點、是二次函數(shù)是常數(shù)圖象上的兩點,那么______填“”、“”或“”18.拋物線y=(x+1)2-2的頂點坐標(biāo)是______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點C旋轉(zhuǎn).當(dāng)點D恰好落在BC邊上時,填空:線段DE與AC的位置關(guān)系是;②設(shè)△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關(guān)系是.猜想論證當(dāng)△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S1的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應(yīng)的BF的長20.(6分)海中有一個小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達(dá)B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.21.(6分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.22.(8分)為了了解初一年級學(xué)生每學(xué)期參加綜合實踐活動的情況,某區(qū)教育行政部門隨機抽樣調(diào)查了部分初一學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,回答下列問題:(I)本次隨機抽樣調(diào)查的學(xué)生人數(shù)為,圖①中的m的值為;(II)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);(III)若該區(qū)初一年級共有學(xué)生2500人,請估計該區(qū)初一年級這個學(xué)期參加綜合實踐活動的天數(shù)大于4天的學(xué)生人數(shù).23.(8分)如圖所示是一幢住房的主視圖,已知:,房子前后坡度相等,米,米,設(shè)后房檐到地面的高度為米,前房檐到地面的高度米,求的值.24.(10分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標(biāo)為(3,0),經(jīng)過A點的直線交拋物線于點D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數(shù)a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.25.(10分)解方程組:.26.(12分)閱讀下面材料,并解答問題.材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.解答:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.試說明的最小值為1.27.(12分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關(guān)系是,位置關(guān)系是.(2)探究證明:將圖1中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點C任意旋轉(zhuǎn),若AC=4,CD=2,請直接寫出△PMN面積的最大值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
先根據(jù)0<k<1判斷出k-1的符號,進而判斷出函數(shù)的增減性,根據(jù)1≤x≤1即可得出結(jié)論.【詳解】∵0<k<1,∴k-1<0,∴此函數(shù)是減函數(shù),∵1≤x≤1,∴當(dāng)x=1時,y最小=1(k-1)+1=1k-1.故選A.【點睛】本題考查的是一次函數(shù)的性質(zhì),熟知一次函數(shù)y=kx+b(k≠0)中,當(dāng)k<0,b>0時函數(shù)圖象經(jīng)過一、二、四象限是解答此題的關(guān)鍵.2、C【解析】
結(jié)合圓錐的平面展開圖的特征,側(cè)面展開是一個扇形,底面展開是一個圓.【詳解】解:圓錐的展開圖是由一個扇形和一個圓形組成的圖形.故選C.【點睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關(guān)鍵.注意圓錐的平面展開圖是一個扇形和一個圓組成.3、D【解析】
當(dāng)k<0,b>0時,直線經(jīng)過一、二、四象限,雙曲線在二、四象限,由此確定正確的選項.【詳解】解:∵當(dāng)k<0,b>0時,直線與y軸交于正半軸,且y隨x的增大而減小,∴直線經(jīng)過一、二、四象限,雙曲線在二、四象限.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象與性質(zhì).關(guān)鍵是明確系數(shù)與圖象的位置的聯(lián)系.4、D【解析】
根據(jù)平行線分線段成比例定理及相似三角形的判定與性質(zhì)進行分析可得出結(jié)論.【詳解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正確;D錯誤;故選D.【點睛】考點:1.平行線分線段成比例;2.相似三角形的判定與性質(zhì).5、B【解析】
因為當(dāng)x=1時,代數(shù)式的值是7,所以1+1+m=7,所以m=5,當(dāng)x=-1時,=-1-1+5=3,故選B.6、A【解析】試題分析:根據(jù)抽樣調(diào)查適用的條件、方差的定義及意義和可能性的大小找到正確答案即可.試題解析:A、某種彩票中獎的概率是,只是一種可能性,買1000張該種彩票不一定會中獎,故錯誤;B、調(diào)查電視機的使用壽命要毀壞電視機,有破壞性,適合用抽樣調(diào)查,故正確;C、標(biāo)準(zhǔn)差反映了一組數(shù)據(jù)的波動情況,標(biāo)準(zhǔn)差越小,數(shù)據(jù)越穩(wěn)定,故正確;D、袋中沒有黑球,摸出黑球是不可能事件,故正確.故選A.考點:1.概率公式;2.全面調(diào)查與抽樣調(diào)查;3.標(biāo)準(zhǔn)差;4.隨機事件.7、D【解析】
設(shè)點B的橫坐標(biāo)為x,然后表示出BC、B′C的橫坐標(biāo)的距離,再根據(jù)位似變換的概念列式計算.【詳解】設(shè)點B的橫坐標(biāo)為x,則B、C間的橫坐標(biāo)的長度為﹣1﹣x,B′、C間的橫坐標(biāo)的長度為a+1,∵△ABC放大到原來的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故選:D.【點睛】本題考查了位似變換,坐標(biāo)與圖形的性質(zhì),根據(jù)位似變換的定義,利用兩點間的橫坐標(biāo)的距離等于對應(yīng)邊的比列出方程是解題的關(guān)鍵.8、C【解析】
根據(jù)反比例函數(shù)y=的圖象上點的坐標(biāo)特征,以及該函數(shù)的圖象的性質(zhì)進行分析、解答.【詳解】A.反比例函數(shù)的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內(nèi),y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(a,b)在它的圖像上,則點(b,a)也在它的圖像上,故正確.故選C.【點睛】本題主要考查反比例函數(shù)的性質(zhì).注意:反比例函數(shù)的增減性只指在同一象限內(nèi).9、A【解析】解:設(shè)矩形的長和寬分別為a、b,則a+b=7,ab=12,所以矩形的對角線長====1.故選A.10、D【解析】
根據(jù)分式的基本性質(zhì),x,y的值均擴大為原來的3倍,求出每個式子的結(jié)果,看結(jié)果等于原式的即是答案.【詳解】根據(jù)分式的基本性質(zhì),可知若x,y的值均擴大為原來的3倍,A、,錯誤;B、,錯誤;C、,錯誤;D、,正確;故選D.【點睛】本題考查的是分式的基本性質(zhì),即分子分母同乘以一個不為0的數(shù),分式的值不變.此題比較簡單,但計算時一定要細(xì)心.11、B【解析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關(guān)知識和勾股定理,屬于中等難度的題型.解決這個問題的關(guān)鍵是根據(jù)圓的知識得出點P的運動軌跡.12、B【解析】主視圖是從正面看得到的視圖,從正面看上面圓錐看見的是:三角形,下面兩個正方體看見的是兩個正方形.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、>;【解析】
∵=a(x-1)2-a-1,∴拋物線對稱軸為:x=1,由拋物線的對稱性,點(-1,m)、(2,n)在二次函數(shù)的圖像上,∵|?1?1|>|2?1|,且m>n,∴a>0.故答案為>14、3n+1【解析】試題分析:由圖可知每個圖案一次增加3個基本圖形,第一個圖案有4個基本圖形,則第n個圖案的基礎(chǔ)圖形有4+3(n-1)=3n+1個考點:規(guī)律型15、【解析】由題意易得四邊形ABFE是正方形,設(shè)AB=1,CF=x,則有BC=x+1,CD=1,∵四邊形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案為.【點睛】本題考查了折疊的性質(zhì),相似多邊形的性質(zhì)等,熟練掌握相似多邊形的面積比等于相似比的平方是解題的關(guān)鍵.16、2a+12b【解析】如圖2,翻折4次時,左側(cè)邊長為c,如圖2,翻折5次,左側(cè)邊長為a,所以翻折4次后,如圖1,由折疊得:AC=A===,所以圖形的周長為:a+c+5b,因為∠ABC<20°,所以,翻折9次后,所得圖形的周長為:2a+10b,故答案為:2a+10b.17、【解析】
根據(jù)二次函數(shù)解析式可知函數(shù)圖象對稱軸是x=0,且開口向上,分析可知兩點均在對稱軸左側(cè)的圖象上;接下來,結(jié)合二次函數(shù)的性質(zhì)可判斷對稱軸左側(cè)圖象的增減性,【詳解】解:二次函數(shù)的函數(shù)圖象對稱軸是x=0,且開口向上,∴在對稱軸的左側(cè)y隨x的增大而減小,∵-3>-4,∴>.故答案為>.【點睛】本題考查了二次函數(shù)的圖像和數(shù)形結(jié)合的數(shù)學(xué)思想.18、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據(jù)頂點式的坐標(biāo)特點可知,頂點坐標(biāo)為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數(shù)的性質(zhì).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】
(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,
∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S1;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此時S△DCF1=S△BDE;
過點D作DF1⊥BD,
∵∠ABC=20°,F(xiàn)1D∥BE,
∴∠F1F1D=∠ABC=20°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
∴∠F1DF1=∠ABC=20°,
∴△DF1F1是等邊三角形,
∴DF1=DF1,過點D作DG⊥BC于G,
∵BD=CD,∠ABC=20°,點D是角平分線上一點,
∴∠DBC=∠DCB=×20°=30°,BG=BC=,
∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF1=320°-150°-20°=150°,
∴∠CDF1=∠CDF1,
∵在△CDF1和△CDF1中,,
∴△CDF1≌△CDF1(SAS),
∴點F1也是所求的點,
∵∠ABC=20°,點D是角平分線上一點,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×20°=30°,
又∵BD=3,
∴BE=×3÷cos30°=3,
∴BF1=3,BF1=BF1+F1F1=3+3=2,
故BF的長為3或2.20、有觸礁危險,理由見解析.【解析】試題分析:過點P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根據(jù)三角函數(shù)AD,BD就可以用PD表示出來,根據(jù)AB=12海里,就得到一個關(guān)于PD的方程,求得PD.從而可以判斷如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險.試題解析:有觸礁危險.理由:過點P作PD⊥AC于D.設(shè)PD為x,在Rt△PBD中,∠PBD=90°-45°=45°.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°-60°=30°∴AD=∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴漁船不改變航線繼續(xù)向東航行,有觸礁危險.【點睛】本題主要考查解直角三角形在實際問題中的應(yīng)用,構(gòu)造直角三角形是解題的前提和關(guān)鍵.21、(1)答案見解析;(2)【解析】
(1)根據(jù)三角形角平分線的定義,即可得到AD;
(2)過D作于DE⊥ABE,根據(jù)角平分線的性質(zhì)得到DE=CD=4,由三角形的面積公式即可得到結(jié)論.【詳解】解:(1)如圖所示,AD即為所求;
(2)如圖,過D作DE⊥AB于E,
∵AD平分∠BAC,
∴DE=CD=4,
∴S△ABD=AB·DE=20cm2.【點睛】掌握畫角平分線的方法和角平分線的相關(guān)定義知識是解答本題的關(guān)鍵.22、(I)150、14;(II)眾數(shù)為3天、中位數(shù)為4天,平均數(shù)為3.5天;(III)700人【解析】
(I)根據(jù)1天的人數(shù)及其百分比可得總?cè)藬?shù),總?cè)藬?shù)減去其它天數(shù)的人數(shù)即可得m的值;(II)根據(jù)眾數(shù)、中位數(shù)和平均數(shù)的定義計算可得;(III)用總?cè)藬?shù)乘以樣本中5天、6天的百分比之和可得.【詳解】解:(I)本次隨機抽樣調(diào)查的學(xué)生人數(shù)為18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案為150、14;(II)眾數(shù)為3天、中位數(shù)為第75、76個數(shù)據(jù)的平均數(shù),即平均數(shù)為=4天,平均數(shù)為=3.5天;(III)估計該區(qū)初一年級這個學(xué)期參加綜合實踐活動的天數(shù)大于4天的學(xué)生有2500×(18%+10%)=700人.【點睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關(guān)鍵.23、【解析】
過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,由后坡度AB與前坡度AC相等知∠BAD=∠CAE=30°,從而得出BD=2、CE=3,據(jù)此可得.【詳解】解:過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,
∵房子后坡度AB與前坡度AC相等,
∴∠BAD=∠CAE,
∵∠BAC=120°,
∴∠BAD=∠CAE=30°,
在直角△ABD中,AB=4米,
∴BD=2米,
在直角△ACE中,AC=6米,
∴CE=3米,
∴a-b=1米.【點睛】本題考查了解直角三角形的應(yīng)用-坡度坡角問題,解題的關(guān)鍵是根據(jù)題意構(gòu)建直角三角形,并熟練掌握坡度坡角的概念.24、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【解析】
(1)把點B和D的坐標(biāo)代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標(biāo),設(shè)直線AD的解析式為y=kx+a,把A和D的坐標(biāo)代入得出方程組,解方程組即可;(2)分兩種情況:①當(dāng)a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當(dāng)a>-1時,顯然F應(yīng)在x軸下方,EF∥AD且EF=AD,設(shè)F(a-3,-3),代入拋物線解析式,即可得出結(jié)果.【詳解】解:(1)把點B和D的坐標(biāo)代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當(dāng)y=0時,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);設(shè)直線AD的解析式為y=kx+a,把A和D的坐標(biāo)代入得:解得:k=1,a=1,∴直線AD的解析式為y=x+1;(2)分兩種情況:①當(dāng)a<-1時,DF∥AE且DF=AE,則F點即為(0,3),∵AE=-1-a=2,∴a=-3;②當(dāng)a>-1時,顯然F應(yīng)在x軸下方,EF∥AD且EF=AD,設(shè)F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;綜上所述,滿足條件的a的值為-3或.【點睛】本題考查拋物線與x軸的交點;二次函數(shù)的性質(zhì);待定系數(shù)法求二次函數(shù)解析式及平行四邊形的判定,綜合性較強.25、【解析】
方程組整理后,利用加減消元法求出解即可.【詳解】解:方程組整理得:①+②得:9x=-45,即x=-5,把x=-代入①得:解得:則原方程組的解為【點睛】本題主要考查二元一次方程組的解法,二元一次方程組的解法有兩種:代入消元法和加減消元法,根據(jù)題目選擇合適的方法.26、(1)=x2+7+(2)見解析【解析】
(1)根據(jù)閱讀材料中的方法將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式即可;(2)原式分子變形后,利用不等式的性質(zhì)求出最小值即可.【詳解】(1)設(shè)﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,則原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;當(dāng)x=0時,取得最小值0,∴當(dāng)x=0時,x2+7+最小值為1,即原式的最小值為1.27、(1)PM=PN,PM⊥PN(2)等腰直角三角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024個人民間借款合同范本格式
- 2024年度家具搬運與安裝合同
- 職業(yè)危害課件教學(xué)課件
- 2024年建筑工程抹灰班組承包合同
- 2024年度財務(wù)咨詢與審計服務(wù)協(xié)議
- 煙花創(chuàng)意課件教學(xué)課件
- 2024健身器材代銷合同
- 2024年度汽車銷售代理協(xié)議
- 2024年度環(huán)保項目工程咨詢服務(wù)合同
- 2024品牌授權(quán)與加盟合作協(xié)議
- 2024年宏觀經(jīng)濟發(fā)展情況分析報告
- 攝影入門課程-攝影基礎(chǔ)與技巧全面解析
- 251直線與圓的位置關(guān)系(第1課時)(導(dǎo)學(xué)案)(原卷版)
- XX有限公司人員分流方案
- 大語言模型賦能自動化測試實踐、挑戰(zhàn)與展望-復(fù)旦大學(xué)(董震)
- 期中模擬檢測(1-3單元)2024-2025學(xué)年度第一學(xué)期西師大版二年級數(shù)學(xué)
- 追覓科技在線測評邏輯題
- 2025年廣東省高中學(xué)業(yè)水平考試春季高考數(shù)學(xué)試題(含答案解析)
- 2024年重慶市渝北區(qū)數(shù)據(jù)谷八中小升初數(shù)學(xué)試卷
- 凝中國心鑄中華魂鑄牢中華民族共同體意識-小學(xué)民族團結(jié)愛國主題班會課件
- 2024年AI大模型場景探索及產(chǎn)業(yè)應(yīng)用調(diào)研報告-前瞻
評論
0/150
提交評論