版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西?。ㄅR汾地區(qū))重點中學2024屆中考數(shù)學適應性模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖標中,是中心對稱圖形的是()A. B.C. D.2.如圖是一次數(shù)學活動課制作的一個轉盤,盤面被等分成四個扇形區(qū)域,并分別標有數(shù)字-1,0,1,2.若轉動轉盤兩次,每次轉盤停止后記錄指針所指區(qū)域的數(shù)字(當指針恰好指在分界線上時,不記,重轉),則記錄的兩個數(shù)字都是正數(shù)的概率為()A. B. C. D.3.一副直角三角板如圖放置,其中,,,點F在CB的延長線上若,則等于()A.35° B.25° C.30° D.15°4.一個不透明的袋中有四張完全相同的卡片,把它們分別標上數(shù)字1、2、3、1.隨機抽取一張卡片,然后放回,再隨機抽取一張卡片,則兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率是()A. B. C. D.5.已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則四邊形ACDB的面積是()A.119 B.289 C.77或119 D.119或2896.如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,且AB=10,BC=15,MN=3,則AC的長是()A.12 B.14 C.16 D.187.二次函數(shù)y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點坐標是(1,2)C.當x>1時,y隨x的增大而減小D.圖象與y軸的交點坐標為(0,2)8.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.9.如圖,△ABC是等邊三角形,點P是三角形內的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.310.在快速計算法中,法國的“小九九”從“一一得一”到“五五二十五”和我國的“小九九”算法是完全一樣的,而后面“六到九”的運算就改用手勢了.如計算8×9時,左手伸出3根手指,右手伸出4根手指,兩只手伸出手指數(shù)的和為7,未伸出手指數(shù)的積為2,則8×9=10×7+2=1.那么在計算6×7時,左、右手伸出的手指數(shù)應該分別為()A.1,2 B.1,3C.4,2 D.4,311.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°12.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.從﹣2,﹣1,2,0這四個數(shù)中任取兩個不同的數(shù)作為點的坐標,該點不在第三象限的概率是_____.14.對于任意非零實數(shù)a、b,定義運算“”,使下列式子成立:,,,,…,則ab=.15.如圖,在平面直角坐標系中,以點O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M,N為圓心.大于MN的長為半徑畫弧,兩弧在第二象限內交于點p(a,b),則a與b的數(shù)量關系是________.16.現(xiàn)在網(wǎng)購越來越多地成為人們的一種消費方式,天貓和淘寶的支付交易額突破67000000000元,將67000000000元用科學記數(shù)法表示為_____.17.已知:如圖,△ABC的面積為12,點D、E分別是邊AB、AC的中點,則四邊形BCED的面積為_____.18.函數(shù)的定義域是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點D,過點D作DE⊥AC,垂足為E,過點E作EF⊥AB,垂足為F,連接FD.(1)求證:DE是⊙O的切線;(2)求EF的長.20.(6分)如圖,一次函數(shù)y=2x﹣4的圖象與反比例函數(shù)y=的圖象交于A、B兩點,且點A的橫坐標為1.(1)求反比例函數(shù)的解析式;(2)點P是x軸上一動點,△ABP的面積為8,求P點坐標.21.(6分)先化簡再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.22.(8分)如圖,平面直角坐標系xOy中,已知點A(0,3),點B(,0),連接AB,若對于平面內一點C,當△ABC是以AB為腰的等腰三角形時,稱點C是線段AB的“等長點”.(1)在點C1(﹣2,3+2),點C2(0,﹣2),點C3(3+,﹣)中,線段AB的“等長點”是點________;(2)若點D(m,n)是線段AB的“等長點”,且∠DAB=60°,求點D的坐標;(3)若直線y=kx+3k上至少存在一個線段AB的“等長點”,求k的取值范圍.23.(8分)在“雙十二”期間,兩個超市開展促銷活動,活動方式如下:超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;超市:購物金額打8折.某學校計劃購買某品牌的籃球做獎品,該品牌的籃球在兩個超市的標價相同,根據(jù)商場的活動方式:若一次性付款4200元購買這種籃球,則在商場購買的數(shù)量比在商場購買的數(shù)量多5個,請求出這種籃球的標價;學校計劃購買100個籃球,請你設計一個購買方案,使所需的費用最少.(直接寫出方案)24.(10分)在汕頭市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元,求每臺電腦、每臺電子白板各多少萬元?25.(10分)如圖,△ABC內接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點B等分半圓CD,求DE的長.26.(12分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結DC并延長至E,使得CE=CD,連結BE,BC.(1)求拋物線的解析式;(2)用含m的代數(shù)式表示點E的坐標,并求出點E縱坐標的范圍;(3)求△BCE的面積最大值.27.(12分)某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調查,根據(jù)調查結果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:運動項目
頻數(shù)(人數(shù))
羽毛球
30
籃球
乒乓球
36
排球
足球
12
請根據(jù)以上圖表信息解答下列問題:頻數(shù)分布表中的,;在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為度;全校有多少名學生選擇參加乒乓球運動?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.2、C【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,總共有16種結果,兩個數(shù)都為正數(shù)的結果有4種,所以兩個數(shù)都為正數(shù)的概率為,故選C.考點:用列表法(或樹形圖法)求概率.3、D【解析】
直接利用三角板的特點,結合平行線的性質得出∠BDE=45°,進而得出答案.【詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故選D.【點睛】此題主要考查了平行線的性質,根據(jù)平行線的性質得出∠BDE的度數(shù)是解題關鍵.4、C【解析】【分析】畫樹狀圖展示所有16種等可能的結果數(shù),再找出兩次抽取的卡片上數(shù)字之積為偶數(shù)的結果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結果數(shù),其中兩次抽取的卡片上數(shù)字之積為偶數(shù)的結果數(shù)為12,所以兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率=,故選C.【點睛】本題考查了列表法與樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、D【解析】
分兩種情況進行討論:①弦AB和CD在圓心同側;②弦AB和CD在圓心異側;作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.【詳解】解:①當弦AB和CD在圓心同側時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四邊形ACDB的面積②當弦AB和CD在圓心異側時,如圖2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四邊形ACDB的面積∴四邊形ACDB的面積為119或289.故選:D.【點睛】本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關鍵是注意掌握數(shù)形結合思想與分類討論思想的應用,小心別漏解.6、C【解析】延長線段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN與△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的邊BC的中點,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故選C.7、B【解析】
由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【詳解】解:A、因為a=3>0,所以開口向上,錯誤;B、頂點坐標是(1,2),正確;C、當x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點坐標為(0,5),錯誤;故選:B.【點睛】考查二次函數(shù)的性質,掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標為(h,k).8、D【解析】
找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在視圖中.【詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;
左視圖有二列,從左往右分別有2,1個正方形;
俯視圖有三列,從上往下分別有3,1個正方形,
故選A.【點睛】本題考查了三視圖的知識,關鍵是掌握三視圖所看的位置.掌握定義是關鍵.此題主要考查了簡單組合體的三視圖,準確把握觀察角度是解題關鍵.9、C【解析】
過點P作平行四邊形PGBD,EPHC,進而利用平行四邊形的性質及等邊三角形的性質即可.【詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【點睛】本題主要考查了平行四邊形的判定及性質以及等邊三角形的判定及性質,等邊三角形的性質:等邊三角形的三個內角都相等,且都等于60°.10、A【解析】試題分析:通過猜想得出數(shù)據(jù),再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和為3×10=30,30+4×3=42,故選A.點評:此題是定義新運算題型.通過閱讀規(guī)則,得出一般結論.解題關鍵是對號入座不要找錯對應關系.11、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質的應用,能正確作出輔助線是解此題的關鍵.12、C【解析】
根據(jù)題意可以寫出y關于x的函數(shù)關系式,然后令x=40求出相應的y值,即可解答本題.【詳解】解:由題意可得,y==,當x=40時,y=6,故選C.【點睛】本題考查了反比例函數(shù)的圖象,根據(jù)題意列出函數(shù)解析式是解決此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
列舉出所有情況,看在第四象限的情況數(shù)占總情況數(shù)的多少即可.【詳解】如圖:共有12種情況,在第三象限的情況數(shù)有2種,
故不再第三象限的共10種,
不在第三象限的概率為,
故答案為.【點睛】本題考查了樹狀圖法的知識,解題的關鍵是列出樹狀圖求出概率.14、【解析】試題分析:根據(jù)已知數(shù)字等式得出變化規(guī)律,即可得出答案:∵,,,,…,∴。15、a+b=1.【解析】試題分析:根據(jù)作圖可知,OP為第二象限角平分線,所以P點的橫縱坐標互為相反數(shù),故a+b=1.考點:1角平分線;2平面直角坐標系.16、【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】67000000000的小數(shù)點向左移動10位得到6.7,所以67000000000用科學記數(shù)法表示為,故答案為:.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.17、1【解析】【分析】設四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據(jù)此建立關于x的方程,解之可得.【詳解】設四邊形BCED的面積為x,則S△ADE=12﹣x,∵點D、E分別是邊AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【點睛】本題主要考查相似三角形的判定與性質,解題的關鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質.18、【解析】
根據(jù)二次根式的性質,被開方數(shù)大于等于0,可知:x-1≥0,解得x的范圍.【詳解】根據(jù)題意得:x-1≥0,解得:x≥1.故答案為:.【點睛】此題考查二次根式,解題關鍵在于掌握二次根式有意義的條件.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2).【解析】
(1)連接OD,根據(jù)切線的判定方法即可求出答案;(2)由于OD∥AC,點O是AB的中點,從而可知OD為△ABC的中位線,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC?CE=4?1=3,在Rt△AEF中,所以EF=AE?sinA=3×sin60°=.【詳解】(1)連接OD,∵△ABC是等邊三角形,∴∠C=∠A=∠B=60°,∵OD=OB,∴△ODB是等邊三角形,∴∠ODB=60°∴∠ODB=∠C,∴OD∥AC,∴DE⊥AC∴OD⊥DE,∴DE是⊙O的切線(2)∵OD∥AC,點O是AB的中點,∴OD為△ABC的中位線,∴BD=CD=2在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=CD=1∴AE=AC﹣CE=4﹣1=3在Rt△AEF中,∠A=60°,∴EF=AE?sinA=3×sin60°=【點睛】本題考查圓的綜合問題,涉及切線的判定,銳角三角函數(shù),含30度角的直角三角形的性質,等邊三角形的性質,本題屬于中等題型.20、(1)y=;(2)(4,0)或(0,0)【解析】
(1)把x=1代入一次函數(shù)解析式求得A的坐標,利用待定系數(shù)法求得反比例函數(shù)解析式;(2)解一次函數(shù)與反比例函數(shù)解析式組成的方程組求得B的坐標,后利用△ABP的面積為8,可求P點坐標.【詳解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=,可得k=1×2=6,∴反比例函數(shù)的解析式為y=;(2)根據(jù)題意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴點B的坐標為(﹣1,﹣6).設直線AB與x軸交于點C,y=2x﹣4中,令y=0,則x=2,即C(2,0),設P點坐標為(x,0),則×|x﹣2|×(2+6)=8,解得x=4或0,∴點P的坐標為(4,0)或(0,0).【點睛】本題主要考查用待定系數(shù)法求一次函數(shù)解析式,及一次函數(shù)與反比例函數(shù)交點的問題,聯(lián)立兩函數(shù)可求解。21、;【解析】
先根據(jù)分式的混合運算順序和運算法則化簡原式,再由特殊銳角的三角函數(shù)值得出a和b的值,代入計算可得.【詳解】原式=÷(﹣)===,當a=2cos30°+1=2×+1=+1,b=tan45°=1時,原式=.【點睛】本題主要考查分式的化簡求值,在化簡的過程中要注意運算順序和分式的化簡.化簡的最后結果分子、分母要進行約分,注意運算的結果要化成最簡分式或整式,也考查了特殊銳角的三角函數(shù)值.22、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】
(1)直接利用線段AB的“等長點”的條件判斷;(2)分兩種情況討論,利用對稱性和垂直的性質即可求出m,n;(3)先判斷出直線y=kx+3與圓A,B相切時,如圖2所示,利用相似三角形的性質即可求出結論.【詳解】(1)∵A(0,3),B(,0),∴AB=2,∵點C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是線段AB的“等長點”,∵點C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是線段AB的“等長點”,∵點C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是線段AB的“等長點”;故答案為C1,C3;(2)如圖1,在Rt△AOB中,OA=3,OB=,∴AB=2,tan∠OAB==,∴∠OAB=30°,當點D在y軸左側時,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵點D(m,n)是線段AB的“等長點”,∴AD=AB,∴D(﹣,0),∴m=,n=0,當點D在y軸右側時,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵點D(m,n)是線段AB的“等長點”,∴AD=AB=2,∴m=2;∴D(,3)(3)如圖2,∵直線y=kx+3k=k(x+3),∴直線y=kx+3k恒過一點P(﹣3,0),∴在Rt△AOP中,OA=3,OP=3,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,當PF與⊙B相切時交y軸于F,∴PA切⊙B于A,∴點F就是直線y=kx+3k與⊙B的切點,∴F(0,﹣3),∴3k=﹣3,∴k=﹣,當直線y=kx+3k與⊙A相切時交y軸于G切點為E,∴∠AEG=∠OPG=90°,∴△AEG∽△POG,∴,∴=,解得:k=或k=(舍去)∵直線y=kx+3k上至少存在一個線段AB的“等長點”,∴﹣≤k≤,【點睛】此題是一次函數(shù)綜合題,主要考查了新定義,銳角三角函數(shù),直角三角形的性質,等腰三角形的性質,對稱性,解(1)的關鍵是理解新定義,解(2)的關鍵是畫出圖形,解(3)的關鍵是判斷出直線和圓A,B相切時是分界點.23、(1)這種籃球的標價為每個50元;(2)見解析【解析】
(1)設這種籃球的標價為每個x元,根據(jù)題意可知在B超市可買籃球個,在A超市可買籃球個,根據(jù)在B商場比在A商場多買5個列方程進行求解即可;(2)分情況,單獨在A超市買100個、單獨在B超市買100個、兩家超市共買100個進行討論即可得.【詳解】(1)設這種籃球的標價為每個x元,依題意,得,解得:x=50,經(jīng)檢驗:x=50是原方程的解,且符合題意,答:這種籃球的標價為每個50元;(2)購買100個籃球,最少的費用為3850元,單獨在A超市一次買100個,則需要費用:100×50×0.9-300=4200元,在A超市分兩次購買,每次各買50個,則需要費用:2(50×50×0.9-300)=3900元,單獨在B超市購買:100×50×0.8=4000元,在A、B兩個超市共買100個,根據(jù)A超市的方案可知在A超市一次購買:=44,即購買45個時花費最小,為45×50×0.9-300=1725元,兩次購買,每次各買45個,需要1725×2=3450元,其余10個在B超市購買,需要10×50×0.8=400元,這樣一共需要3450+400=3850元,綜上可知最少費用的購買方案:在A超市分兩次購買,每次購買45個籃球,費用共為3450元;在B超市購買10個,費用400元,兩超市購買100個籃球總費用3850元.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.24、每臺電腦0.5萬元;每臺電子白板1.5萬元.【解析】
先設每臺電腦x萬元,每臺電子白板y萬元,根據(jù)電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元列出方程組,求出x,y的值即可.【詳解】設每臺電腦x萬元,每臺電子白板y萬元.根據(jù)題意,得:解得,答:每臺電腦0.5萬元,每臺電子白板1.5萬元.【點睛】本題考查了二元一次方程組的應用,解題的關鍵是讀懂題意,找出之間的數(shù)量關系,列出二元一次方程組.25、(1)證明見解析;(2);(3);【解析】
(1)連接OA、AD,如圖,利用圓周角定理得到∠B=∠ADC,則可證明∠ADC=2∠ACP,利用CD為直徑得到∠DAC=90°,從而得到∠ADC=60°,∠C=30°,則∠AOP=60°,于是可證明∠OAP=90°,然后根據(jù)切線的判斷定理得到結論;(2)利用∠P=30°得到OP=2OA,則,從而得到⊙O的直徑;(3)作EH⊥AD于H,如圖,由點B等分半圓CD得到∠BAC=45°,則∠DAE=45°,設DH=x,則DE=2x,所以然后求出x即可得到DE的長.【詳解】(1)證明:連接OA、AD,如圖,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD為直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年城市供水管道建設與維護服務合同
- 2024年建設項目工程總承包合同
- 高中教師辭職報告(9篇)
- 發(fā)廊合伙經(jīng)營合同范例
- 商業(yè)演出策劃合同范例
- 衛(wèi)浴簡易合同范例
- 厚街酒店蔬菜配送合同范例
- 出國勞務采購合同模板
- 合同范例庫是
- 夏莊租房合同范例
- 智慧教育發(fā)展趨勢智慧課堂
- GB/T 43635-2024法庭科學DNA實驗室檢驗規(guī)范
- 勞動仲裁:如何處理仲裁證據(jù)
- 大酒店勞務派遣服務專項方案
- 醫(yī)院培訓課件:《病室環(huán)境管理》
- 中國感染性休克指南
- 2021年初中部漢語聽寫大賽題庫
- 大數(shù)據(jù)治理與服務管理解決數(shù)據(jù)孤島問題的關鍵措施
- 帶電作業(yè)規(guī)程課件
- 建筑工程《擬投入本項目的主要施工設備表及試驗檢測儀器設備表》
- 小針刀治療腰腿痛
評論
0/150
提交評論