浙江省杭州市桐廬縣2024屆中考數(shù)學(xué)押題試卷含解析_第1頁
浙江省杭州市桐廬縣2024屆中考數(shù)學(xué)押題試卷含解析_第2頁
浙江省杭州市桐廬縣2024屆中考數(shù)學(xué)押題試卷含解析_第3頁
浙江省杭州市桐廬縣2024屆中考數(shù)學(xué)押題試卷含解析_第4頁
浙江省杭州市桐廬縣2024屆中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

浙江省杭州市桐廬縣2024屆中考數(shù)學(xué)押題試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學(xué)記數(shù)法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1052.化簡的結(jié)果是()A.±4 B.4 C.2 D.±23.一個(gè)空間幾何體的主視圖和左視圖都是邊長為2的正方形,俯視圖是一個(gè)圓,那么這個(gè)幾何體的表面積是()A.6πB.4πC.8πD.44.計(jì)算3a2-a2的結(jié)果是()A.4a2B.3a2C.2a2D.35.在平面直角坐標(biāo)系中,將拋物線繞著它與軸的交點(diǎn)旋轉(zhuǎn)180°,所得拋物線的解析式是().A. B.C. D.6.等腰三角形的一個(gè)外角是100°,則它的頂角的度數(shù)為()A.80° B.80°或50° C.20° D.80°或20°7.如圖,在?ABCD中,AB=1,AC=4,對角線AC與BD相交于點(diǎn)O,點(diǎn)E是BC的中點(diǎn),連接AE交BD于點(diǎn)F.若AC⊥AB,則FD的長為()A.2 B.3 C.4 D.68.一個(gè)幾何體的三視圖如圖所示,這個(gè)幾何體是()A.三菱柱 B.三棱錐 C.長方體 D.圓柱體9.定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個(gè)方程為“和諧”方程;如果一元二次方程ax2+bx+c=0(a≠0)滿足a﹣b+c=0那么我們稱這個(gè)方程為“美好”方程,如果一個(gè)一元二次方程既是“和諧”方程又是“美好”方程,則下列結(jié)論正確的是()A.方有兩個(gè)相等的實(shí)數(shù)根 B.方程有一根等于0C.方程兩根之和等于0 D.方程兩根之積等于010.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點(diǎn)A,D分別對應(yīng)數(shù)軸上的實(shí)數(shù)﹣2,2,則AC的長度為()A.2 B.4 C.2 D.411.下列四個(gè)幾何體中,主視圖與左視圖相同的幾何體有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)12.如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AC和BD相交于點(diǎn)E,EF⊥BD垂足為F.則下列結(jié)論錯(cuò)誤的是()A.AEEC=BEED B.AE二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,直線經(jīng)過正方形的頂點(diǎn)分別過此正方形的頂點(diǎn)、作于點(diǎn)、于點(diǎn).若,則的長為________.14.關(guān)于x的方程kx2﹣(2k+1)x+k+2=0有實(shí)數(shù)根,則k的取值范圍是_____.15.如圖,在正方形中,對角線與相交于點(diǎn),為上一點(diǎn),,為的中點(diǎn).若的周長為18,則的長為________.16.如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(-3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為__.17.一個(gè)不透明口袋里裝有形狀、大小都相同的2個(gè)紅球和4個(gè)黑球,從中任意摸出一個(gè)球恰好是紅球的概率是____.18.在如圖所示的正方形方格紙中,每個(gè)小的四邊形都是相同的正方形,A、B、C、D都是格點(diǎn),AB與CD相交于M,則AM:BM=__.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE,已知∠BAC=30°,EF⊥AB,垂足為F,連接DF試說明AC=EF;求證:四邊形ADFE是平行四邊形.20.(6分)某小學(xué)為了了解學(xué)生每天完成家庭作業(yè)所用時(shí)間的情況,從每班抽取相同數(shù)量的學(xué)生進(jìn)行調(diào)查,并將所得數(shù)據(jù)進(jìn)行整理,制成條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖如下:補(bǔ)全條形統(tǒng)計(jì)圖;求扇形統(tǒng)計(jì)圖扇形D的圓心角的度數(shù);若該中學(xué)有2000名學(xué)生,請估計(jì)其中有多少名學(xué)生能在1.5小時(shí)內(nèi)完成家庭作業(yè)?21.(6分)某校初三體育考試選擇項(xiàng)目中,選擇籃球項(xiàng)目和排球項(xiàng)目的學(xué)生比較多.為了解學(xué)生掌握籃球技巧和排球技巧的水平情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.收集數(shù)據(jù):從選擇籃球和排球的學(xué)生中各隨機(jī)抽取16人,進(jìn)行了體育測試,測試成績(十分制)如下:排球109.59.510899.5971045.5109.59.510籃球9.598.58.5109.510869.5109.598.59.56整理、描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):(說明:成績8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格)分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:項(xiàng)目平均數(shù)中位數(shù)眾數(shù)排球8.759.510籃球8.819.259.5得出結(jié)論:(1)如果全校有160人選擇籃球項(xiàng)目,達(dá)到優(yōu)秀的人數(shù)約為_________人;(2)初二年級的小明和小軍看到上面數(shù)據(jù)后,小明說:排球項(xiàng)目整體水平較高.小軍說:籃球項(xiàng)目整體水平較高.你同意_______的看法,理由為____________________________.(至少從兩個(gè)不同的角度說明推斷的合理性)22.(8分)如圖1,△ABC中,AB=AC=6,BC=4,點(diǎn)D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點(diǎn)M、N、P分別是線段DE、BC、CD的中點(diǎn),連接MP、PN、MN.(1)求證:△PMN是等腰三角形;(2)將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),①如圖2,當(dāng)點(diǎn)D、E分別在邊AC兩側(cè)時(shí),求證:△PMN是等腰三角形;②當(dāng)△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到第一次點(diǎn)D、E、C在一條直線上時(shí),請直接寫出此時(shí)BD的長.23.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,過點(diǎn)D作⊙O的切線DE交AC于點(diǎn)E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).24.(10分)“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).請根據(jù)以上信息回答:(1)本次參加抽樣調(diào)查的居民有多少人?(2)將兩幅不完整的圖補(bǔ)充完整;(3)求扇形統(tǒng)計(jì)圖中C所對圓心角的度數(shù);(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè).用列表或畫樹狀圖的方法,求他第二個(gè)吃到的恰好是C粽的概率.25.(10分)每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購,經(jīng)調(diào)查:購買了3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花了16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元.求甲、乙兩種型號(hào)設(shè)備的價(jià)格;該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有幾種購買方案;在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月,若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設(shè)計(jì)一種最省錢的購買方案.26.(12分)計(jì)算:﹣|﹣2|+()﹣1﹣2cos45°27.(12分)某地一路段修建,甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,若由甲隊(duì)先做5天,再由甲、乙兩隊(duì)合作9天,共完成這項(xiàng)工程的三分之一.(1)求甲、乙兩隊(duì)合作完成這項(xiàng)工程需要多少天?(2)若甲隊(duì)的工作效率提高20%,乙隊(duì)工作效率提高50%,甲隊(duì)施工1天需付工程款4萬元,乙隊(duì)施工一天需付工程款2.5萬元,現(xiàn)由甲乙兩隊(duì)合作若干天后,再由乙隊(duì)完成剩余部分,在完成此項(xiàng)工程的工程款不超過190萬元的條件下要求盡早完成此項(xiàng)工程,則甲、乙兩隊(duì)至多要合作多少天?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】55000是5位整數(shù),小數(shù)點(diǎn)向左移動(dòng)4位后所得的數(shù)即可滿足科學(xué)記數(shù)法的要求,由此可知10的指數(shù)為4,所以,55000用科學(xué)記數(shù)法表示為5.5×104,故選B.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.2、B【解析】

根據(jù)算術(shù)平方根的意義求解即可.【詳解】4,故選:B.【點(diǎn)睛】本題考查了算術(shù)平方根的意義,一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根,正數(shù)a有一個(gè)正的算術(shù)平方根,0的算術(shù)平方根是0,負(fù)數(shù)沒有算術(shù)平方根.3、A【解析】根據(jù)題意,可判斷出該幾何體為圓柱.且已知底面半徑以及高,易求表面積.解答:解:根據(jù)題目的描述,可以判斷出這個(gè)幾何體應(yīng)該是個(gè)圓柱,且它的底面圓的半徑為1,高為2,那么它的表面積=2π×2+π×1×1×2=6π,故選A.4、C【解析】【分析】根據(jù)合并同類項(xiàng)法則進(jìn)行計(jì)算即可得.【詳解】3a2-a2=(3-1)a2=2a2,故選C.【點(diǎn)睛】本題考查了合并同類項(xiàng),熟記合并同類項(xiàng)的法則是解題的關(guān)鍵.合并同類項(xiàng)就是把同類項(xiàng)的系數(shù)相加減,字母和字母的指數(shù)不變.5、B【解析】

把拋物線y=x2+2x+3整理成頂點(diǎn)式形式并求出頂點(diǎn)坐標(biāo),再求出與y軸的交點(diǎn)坐標(biāo),然后求出所得拋物線的頂點(diǎn),再利用頂點(diǎn)式形式寫出解析式即可.【詳解】解:∵y=x2+2x+3=(x+1)2+2,

∴原拋物線的頂點(diǎn)坐標(biāo)為(-1,2),

令x=0,則y=3,

∴拋物線與y軸的交點(diǎn)坐標(biāo)為(0,3),

∵拋物線繞與y軸的交點(diǎn)旋轉(zhuǎn)180°,

∴所得拋物線的頂點(diǎn)坐標(biāo)為(1,4),

∴所得拋物線的解析式為:y=-x2+2x+3[或y=-(x-1)2+4].

故選:B.【點(diǎn)睛】本題考查了二次函數(shù)圖象與幾何變換,利用頂點(diǎn)的變化確定函數(shù)解析式的變化可以使求解更簡便.6、D【解析】

根據(jù)鄰補(bǔ)角的定義求出與外角相鄰的內(nèi)角,再根據(jù)等腰三角形的性質(zhì)分情況解答.【詳解】∵等腰三角形的一個(gè)外角是100°,∴與這個(gè)外角相鄰的內(nèi)角為180°?100°=80°,當(dāng)80°為底角時(shí),頂角為180°-160°=20°,∴該等腰三角形的頂角是80°或20°.故答案選:D.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì).7、C【解析】

利用平行四邊形的性質(zhì)得出△ADF∽△EBF,得出=,再根據(jù)勾股定理求出BO的長,進(jìn)而得出答案.【詳解】解:∵在□ABCD中,對角線AC、BD相交于O,∴BO=DO,AO=OC,AD∥BC,∴△ADF∽△EBF,∴=,∵AC=4,∴AO=2,∵AB=1,AC⊥AB,∴BO===3,∴BD=6,∵E是BC的中點(diǎn),∴==,∴BF=2,F(xiàn)D=4.故選C.【點(diǎn)睛】本題考查了勾股定理與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握勾股定理與相似三角形的判定與性質(zhì).8、A【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由于左視圖和俯視圖為長方形可得此幾何體為柱體,由主視圖為三角形可得為三棱柱.故選:B.【點(diǎn)睛】此題主要考查了學(xué)生對三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對空間想象能力方面的考查.9、C【解析】試題分析:根據(jù)已知得出方程ax2+bx+c=0(a≠0)有兩個(gè)根x=1和x=﹣1,再判斷即可.解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,∴方程ax2+bx+c=0(a≠0)有兩個(gè)根x=1和x=﹣1,∴1+(﹣1)=0,即只有選項(xiàng)C正確;選項(xiàng)A、B、D都錯(cuò)誤;故選C.10、C【解析】

根據(jù)等腰三角形的性質(zhì)和勾股定理解答即可.【詳解】解:∵點(diǎn)A,D分別對應(yīng)數(shù)軸上的實(shí)數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點(diǎn)睛】此題考查等腰三角形的性質(zhì),注意等腰三角形的三線合一,熟練運(yùn)用勾股定理.11、D【解析】解:①正方體的主視圖與左視圖都是正方形;②球的主視圖與左視圖都是圓;③圓錐主視圖與左視圖都是三角形;④圓柱的主視圖和左視圖都是長方形;故選D.12、A【解析】

利用平行線的性質(zhì)以及相似三角形的性質(zhì)一一判斷即可.【詳解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故選項(xiàng)故選:A.【點(diǎn)睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì),平行線分線段成比例定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、13【解析】

根據(jù)正方形的性質(zhì)得出AD=AB,∠BAD=90°,根據(jù)垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB,根據(jù)AAS推出△AED≌△BFA,根據(jù)全等三角形的性質(zhì)得出AE=BF=5,AF=DE=8,即可求出答案;【詳解】∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代換);∵BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△AED(AAS),∴AF=DE=8,BF=AE=5(全等三角形的對應(yīng)邊相等),∴EF=AF+AE=DE+BF=8+5=13.故答案為13.點(diǎn)睛:本題考查了勾股定理,全等三角形的性質(zhì)和判定,正方形的性質(zhì)的應(yīng)用,能求出△AED≌△BFA是解此題的關(guān)鍵.14、k≤.【解析】

分k=1及k≠1兩種情況考慮:當(dāng)k=1時(shí),通過解一元一次方程可得出原方程有解,即k=1符合題意;等k≠1時(shí),由△≥1即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.綜上此題得解.【詳解】當(dāng)k=1時(shí),原方程為-x+2=1,解得:x=2,∴k=1符合題意;當(dāng)k≠1時(shí),有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.綜上:k的取值范圍是k≤.故答案為:k≤.【點(diǎn)睛】本題考查了根的判別式以及一元二次方程的定義,分k=1及k≠1兩種情況考慮是解題的關(guān)鍵.15、【解析】

先根據(jù)直角三角形的性質(zhì)求出DE的長,再由勾股定理得出CD的長,進(jìn)而可得出BE的長,由三角形中位線定理即可得出結(jié)論.【詳解】解:∵四邊形是正方形,∴,,.在中,為的中點(diǎn),∴.∵的周長為18,,∴,∴.在中,根據(jù)勾股定理,得,∴,∴.在中,∵,為的中點(diǎn),又∵為的中位線,∴.故答案為:.【點(diǎn)睛】本題考查的是正方形的性質(zhì),涉及到直角三角形的性質(zhì)、三角形中位線定理等知識(shí),難度適中.16、(-2,7).【解析】

解:過點(diǎn)D作DF⊥x軸于點(diǎn)F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點(diǎn)A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點(diǎn)D的坐標(biāo)為:(﹣7,2),∴反比例函數(shù)的解析式為:y=﹣①,點(diǎn)C的坐標(biāo)為:(﹣4,8).設(shè)直線BC的解析式為:y=kx+b,則解得:∴直線BC的解析式為:y=﹣x+6②,聯(lián)立①②得:或(舍去),∴點(diǎn)E的坐標(biāo)為:(﹣2,7).故答案為(﹣2,7).17、.【解析】

根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大?。驹斀狻俊咭粋€(gè)不透明口袋里裝有形狀、大小都相同的2個(gè)紅球和4個(gè)黑球,∴從中任意摸出一個(gè)球恰好是紅球的概率為:,故答案為.【點(diǎn)睛】本題考查了概率公式的應(yīng)用.注意概率=所求情況數(shù)與總情況數(shù)之比.18、5:1【解析】

根據(jù)題意作出合適的輔助線,然后根據(jù)三角形相似即可解答本題.【詳解】解:作AE∥BC交DC于點(diǎn)E,交DF于點(diǎn)F,設(shè)每個(gè)小正方形的邊長為a,則△DEF∽△DCN,∴==,∴EF=a,∵AF=2a,∴AE=a,∵△AME∽△BMC,∴===,故答案為:5:1.【點(diǎn)睛】本題考查相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、證明見解析.【解析】

(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,從而可證明△AFE≌△BCA,再根據(jù)全等三角形的性質(zhì)即可證明AC=EF.(2)根據(jù)(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據(jù)平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形.【詳解】證明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等邊三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等邊三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四邊形ADFE是平行四邊形.考點(diǎn):1.全等三角形的判定與性質(zhì);2.等邊三角形的性質(zhì);3.平行四邊形的判定.20、(1)補(bǔ)圖見解析;(2)27°;(3)1800名【解析】

(1)根據(jù)A類的人數(shù)是10,所占的百分比是25%即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得B類的人數(shù);

(2)用360°乘以對應(yīng)的比例即可求解;

(3)用總?cè)藬?shù)乘以對應(yīng)的百分比即可求解.【詳解】(1)抽取的總?cè)藬?shù)是:10÷25%=40(人),在B類的人數(shù)是:40×30%=12(人).;(2)扇形統(tǒng)計(jì)圖扇形D的圓心角的度數(shù)是:360×=27°;(3)能在1.5小時(shí)內(nèi)完成家庭作業(yè)的人數(shù)是:2000×(25%+30%+35%)=1800(人).考點(diǎn):條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖.21、130小明平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高.【解析】

根據(jù)抽取的16人中成績達(dá)到優(yōu)秀的百分比,即可得到全校達(dá)到優(yōu)秀的人數(shù);根據(jù)平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高,即可得到結(jié)論.【詳解】解:補(bǔ)全表格成績:人數(shù)項(xiàng)目10排球11275籃球021103達(dá)到優(yōu)秀的人數(shù)約為(人);故答案為130;同意小明的看法,理由為:平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高答案不唯一,理由需支持判斷結(jié)論故答案為小明,平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高.【點(diǎn)睛】本題考查眾數(shù)、中位數(shù),平均數(shù)的應(yīng)用,解題的關(guān)鍵是掌握眾數(shù)、中位數(shù)、平均數(shù)的定義以及用樣本估計(jì)總體.22、(1)見解析;(2)①見解析;②279【解析】

(1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論P(yáng)M=PN;(2)①先證明△ABD≌△ACE,得BD=CE,同理根據(jù)三角形中位線定理可得結(jié)論;②如圖4,連接AM,計(jì)算AN和DE、EM的長,如圖3,證明△ABD≌△CAE,得BD=CE,根據(jù)勾股定理計(jì)算CM的長,可得結(jié)論【詳解】(1)如圖1,∵點(diǎn)N,P是BC,CD的中點(diǎn),∴PN∥BD,PN=BD,∵點(diǎn)P,M是CD,DE的中點(diǎn),∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∴△PMN是等腰三角形;(2)①如圖2,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∵點(diǎn)M、N、P分別是線段DE、BC、CD的中點(diǎn),∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②當(dāng)△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到第一次點(diǎn)D、E、C在一條直線上時(shí),如圖3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如圖4,連接AM,∵M(jìn)是DE的中點(diǎn),N是BC的中點(diǎn),AB=AC,∴A、M、N共線,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE∽△AEC,∴,∴,∴AM=,DE=,∴EM=,如圖3,Rt△ACM中,CM===,∴BD=CE=CM+EM=.【點(diǎn)睛】此題是三角形的綜合題,主要考查了三角形的中位線定理,等腰三角形的判定和性質(zhì),全等和相似三角形的判定和性質(zhì),直角三角形的性質(zhì),解(1)的關(guān)鍵是判斷出PM=12CE,PN=123、(1)見解析;(2)75﹣a.【解析】

(1)連接CD,求出∠ADC=90°,根據(jù)切線長定理求出DE=EC,即可求出答案;(2)連接CD、OD、OE,求出扇形DOC的面積,分別求出△ODE和△OCE的面積,即可求出答案【詳解】(1)證明:連接DC,∵BC是⊙O直徑,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC為直徑,∴AC切⊙O于C,∵過點(diǎn)D作⊙O的切線DE交AC于點(diǎn)E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:連接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的長度是a,∴扇形DOC的面積是×a×=a,∴DE、EC和弧DC圍成的部分的面積S=××10+×10﹣a=75﹣a.【點(diǎn)睛】本題考查了圓周角定理,切線的性質(zhì),切線長定理,等腰三角形的性質(zhì)和判定,勾股定理,扇形的面積,三角形的面積等知識(shí)點(diǎn),能綜合運(yùn)用知識(shí)點(diǎn)進(jìn)行推理和計(jì)算是解此題的關(guān)鍵.24、(1)本次參加抽樣調(diào)查的居民有600人;(2)補(bǔ)圖見解析;(3)72°;(4).【解析】試題分析:(1)用B的頻數(shù)除以B所占的百分比即可求得結(jié)論;(2)分別求得C的頻數(shù)及其所占的百分比即可補(bǔ)全統(tǒng)計(jì)圖;(3)算出A的所占的百分比,再進(jìn)一步算出C所占的百分比,再扇形統(tǒng)計(jì)圖中C所對圓心角的度數(shù);(4)列出樹形圖即可求得結(jié)論.試題解析:(1)60÷10%=600(人).答:本次參加抽樣調(diào)查的居民有600人.(2)如圖;(3),360°×(1-10%-30%-40%)=72°.(4)如圖;(列表方法略,參照給分).P(C粽

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論