版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省廣南縣第三中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末調(diào)研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知點(diǎn)和點(diǎn),且,則實(shí)數(shù)的值是()A.5或-1 B.5或1 C.2或-6 D.-2或62.已知是第三象限的角,若,則A. B. C. D.3.小敏打開計(jì)算機(jī)時(shí),忘記了開機(jī)密碼的前兩位,只記得第一位是M,A.815 B.18 C.14.已知函數(shù)(,)的部分圖像如圖所示,則的值分別是()A. B.C. D.5.等差數(shù)列的前項(xiàng)和為.若,則()A. B. C. D.6.以點(diǎn)和為直徑兩端點(diǎn)的圓的方程是()A. B.C. D.7.已知直線m,n,平面α,β,給出下列命題:①若m⊥α,n⊥β,且m⊥n,則α⊥β②若m∥α,n∥β,且m∥n,則α∥β③若m∥α,n∥β,且α∥β,且m∥n④若m⊥α,n⊥β,且α⊥β,則m⊥n其中正確的命題是()A.②③ B.①③ C.①④ D.③④8.的內(nèi)角的對(duì)邊分別為,邊上的中線長(zhǎng)為,則面積的最大值為()A. B. C. D.9.已知為遞增等比數(shù)列,則()A. B.5 C.6 D.10.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|)的部分圖象如圖所示,則f(x)的解析式為()A.f(x)=sin(x)﹣1 B.f(x)=2sin(x)﹣1C.f(x)=2sin(x)﹣1 D.f(x)=2sin(2x)+1二、填空題:本大題共6小題,每小題5分,共30分。11.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為.12.設(shè)數(shù)列滿足,,且,用表示不超過的最大整數(shù),如,,則的值用表示為__________.13.已知空間中的三個(gè)頂點(diǎn)的坐標(biāo)分別為,則BC邊上的中線的長(zhǎng)度為________.14.利用數(shù)學(xué)歸納法證明不等式“”的過程中,由“”變到“”時(shí),左邊增加了_____項(xiàng).15.等比數(shù)列中首項(xiàng),公比,則______.16.過點(diǎn)作圓的切線,則切線的方程為_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在銳角三角形中,內(nèi)角的對(duì)邊分別為且.(1)求角的大?。唬?)若,,求△的面積.18.設(shè)數(shù)列滿足,,,.s(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng);(2)求數(shù)列的通項(xiàng),并求數(shù)列的前項(xiàng)和;(3)若,且是單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍.19.已知是公差不為0的等差數(shù)列,,,成等比數(shù)列,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和為,證明:.20.已知圓心在軸的正半軸上,且半徑為2的圓被直線截得的弦長(zhǎng)為.(1)求圓的方程;(2)設(shè)動(dòng)直線與圓交于兩點(diǎn),則在軸正半軸上是否存在定點(diǎn),使得直線與直線關(guān)于軸對(duì)稱?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.21.已知數(shù)列an滿足an+1=2an(1)求證:數(shù)列bn(2)求數(shù)列an的前n項(xiàng)和為S
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
根據(jù)空間中兩點(diǎn)間距離公式建立方程求得結(jié)果.【詳解】解得:或本題正確選項(xiàng):【點(diǎn)睛】本題考查空間中兩點(diǎn)間距離公式的應(yīng)用,屬于基礎(chǔ)題.2、D【解析】
根據(jù)是第三象限的角得,利用同角三角函數(shù)的基本關(guān)系,求得的值.【詳解】因?yàn)槭堑谌笙薜慕?,所以,因?yàn)?,所以解得:,故選D.【點(diǎn)睛】本題考查余弦函數(shù)在第三象限的符號(hào)及同角三角函數(shù)的基本關(guān)系,即已知值,求的值.3、C【解析】試題分析:開機(jī)密碼的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15種可能,所以小敏輸入一次密碼能夠成功開機(jī)的概率是115【考點(diǎn)】古典概型【解題反思】對(duì)古典概型必須明確兩點(diǎn):①對(duì)于每個(gè)隨機(jī)試驗(yàn)來說,試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);②每個(gè)基本事件出現(xiàn)的可能性相等.只有在同時(shí)滿足①、②的條件下,運(yùn)用的古典概型計(jì)算公式P(A)=m4、B【解析】
通過函數(shù)圖像可計(jì)算出三角函數(shù)的周期,從而求得w,再代入一個(gè)最低點(diǎn)即可得到答案.【詳解】,,又,,,又,,故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的圖像,通過周期求得w是解決此類問題的關(guān)鍵.5、D【解析】
根據(jù)等差數(shù)列片段和成等差數(shù)列,可得到,代入求得結(jié)果.【詳解】由等差數(shù)列性質(zhì)知:,,,成等差數(shù)列,即:本題正確選項(xiàng):【點(diǎn)睛】本題考查等差數(shù)列片段和性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)片段和成等差數(shù)列得到項(xiàng)之間的關(guān)系,屬于基礎(chǔ)題.6、A【解析】
可根據(jù)已知點(diǎn)直接求圓心和半徑.【詳解】點(diǎn)和的中點(diǎn)是圓心,圓心坐標(biāo)是,點(diǎn)和間的距離是直徑,,即,圓的方程是.故選A.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程的求法,屬于基礎(chǔ)題型.7、C【解析】
根據(jù)線線、線面和面面有關(guān)定理,對(duì)選項(xiàng)逐一分析,由此得出正確選項(xiàng).【詳解】對(duì)于①,兩個(gè)平面的垂線垂直,那么這兩個(gè)平面垂直.所以①正確.對(duì)于②,與可能相交,此時(shí)并且與兩個(gè)平面的交線平行.所以②錯(cuò)誤.對(duì)于③,直線可能為異面直線,所以③錯(cuò)誤.對(duì)于④,兩個(gè)平面垂直,那么這兩個(gè)平面的垂線垂直.所以④正確.綜上所述,正確命題的序號(hào)為①④.故選:C【點(diǎn)睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.8、D【解析】
作出圖形,通過和余弦定理可計(jì)算出,于是利用均值不等式即可得到答案.【詳解】根據(jù)題意可知,而,同理,而,于是,即,又因?yàn)?,代入解?過D作DE垂直于AB于點(diǎn)E,因此E為中點(diǎn),故,而,故面積最大值為4,答案為D.【點(diǎn)睛】本題主要考查解三角形與基本不等式的相關(guān)綜合,表示出三角形面積及使用均值不等式是解決本題的關(guān)鍵,意在考查學(xué)生的轉(zhuǎn)化能力,計(jì)算能力,難度較大.9、D【解析】
設(shè)數(shù)列的公比為,根據(jù)等比數(shù)列的性質(zhì),得,又由,求得,進(jìn)而可求解的值,得到答案.【詳解】根據(jù)題意,等比數(shù)列中,設(shè)其公比為,因?yàn)?,則有,又由,且,解得,所以,所以,故選D.【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式和等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用等比數(shù)列的性質(zhì),準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、D【解析】
由已知列式求得的值,再由周期求得的值,利用五點(diǎn)作圖的第二個(gè)點(diǎn)求得的值,即可得到答案.【詳解】由題意,根據(jù)三角函數(shù)的圖象,可得,解得,又由,解得,則,又由五點(diǎn)作圖的第二個(gè)點(diǎn)可得:,解得,所以函數(shù)的解析式為,故選D.【點(diǎn)睛】本題主要考查了由的部分圖象求解函數(shù)的解析式,其中解答中熟記三角函數(shù)的五點(diǎn)作圖法,以及三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】該幾何體是由兩個(gè)高為1的圓錐與一個(gè)高為2的圓柱組合而成,所以該幾何體的體積為.考點(diǎn):本題主要考查三視圖及幾何體體積的計(jì)算.12、【解析】
由題設(shè)可得知該函數(shù)的最小正周期是,令,則由等差數(shù)列的定義可知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,即,由此可得,將以上個(gè)等式兩邊相加可得,即,所以,故,應(yīng)填答案.點(diǎn)睛:解答本題的關(guān)鍵是借助題設(shè)中提供的數(shù)列遞推關(guān)系式,先求出數(shù)列的通項(xiàng)公式,然后再運(yùn)用列項(xiàng)相消法求出,最后借助題設(shè)中提供的新信息,求出使得問題獲解.13、【解析】
先求出BC的中點(diǎn),由此能求出BC邊上的中線的長(zhǎng)度.【詳解】解:因?yàn)榭臻g中的三個(gè)頂點(diǎn)的坐標(biāo)分別為,所以BC的中點(diǎn)為,所以BC邊上的中線的長(zhǎng)度為:,故答案為:.【點(diǎn)睛】本題考查三角形中中線長(zhǎng)的求法,考查中點(diǎn)坐標(biāo)公式、兩點(diǎn)間距離的求法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.14、.【解析】
分析題意,根據(jù)數(shù)學(xué)歸納法的證明方法得到時(shí),不等式左邊的表示式是解答該題的突破口,當(dāng)時(shí),左邊,由此將其對(duì)時(shí)的式子進(jìn)行對(duì)比,得到結(jié)果.【詳解】當(dāng)時(shí),左邊,當(dāng)時(shí),左邊,觀察可知,增加的項(xiàng)數(shù)是,故答案是.【點(diǎn)睛】該題考查的是有關(guān)數(shù)學(xué)歸納法的問題,在解題的過程中,需要明確式子的形式,正確理解對(duì)應(yīng)式子中的量,認(rèn)真分析,明確哪些項(xiàng)是添的,得到結(jié)果.15、9【解析】
根據(jù)等比數(shù)列求和公式,將進(jìn)行轉(zhuǎn)化,然后得到關(guān)于和的等式,結(jié)合,討論出和的值,得到答案.【詳解】因?yàn)榈缺葦?shù)列中首項(xiàng),公比,所以成首項(xiàng)為,公比為的等比數(shù)列,共項(xiàng),所以整理得因?yàn)樗钥傻?,等式右邊為整?shù),故等式左邊也需要為整數(shù),則應(yīng)是的約數(shù),所以可得,所以,當(dāng)時(shí),得,此時(shí)當(dāng)時(shí),得,此時(shí)當(dāng)時(shí),得,此時(shí),所以,故答案為:.【點(diǎn)睛】本題考查等比數(shù)列求和的基本量運(yùn)算,涉及分類討論的思想,屬于中檔題.16、或【解析】
求出圓的圓心與半徑分別為:,,分別設(shè)出直線斜率存在與不存在情況下的直線方程,利用點(diǎn)到直線的距離等于半徑即可得到答案.【詳解】由圓的一般方程得到圓的圓心和半徑分別為;,;(1)當(dāng)過點(diǎn)的切線斜率不存在時(shí),切線方程為:,此時(shí)圓心到直線的距離,故不與圓相切,不滿足題意;(2)當(dāng)過點(diǎn)的切線的斜率存在時(shí),設(shè)切線方程為:,即為;由于直線與圓相切,所以圓心到切線的距離等于半徑,即,解得:或,所以切線的方程為或;綜述所述:切線的方程或【點(diǎn)睛】本題考查過圓外一點(diǎn)求圓的切線方程,解題關(guān)鍵是設(shè)出切線方程,利用圓心到切線的距離等于半徑得到關(guān)系式,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用正弦定理及,便可求出,得到的大??;(2)利用(1)中所求的大小,結(jié)合余弦定理求出的值,最后再用三角形面積公式求出值.【詳解】(1)由及正弦定理,得.因?yàn)闉殇J角,所以.(2)由余弦定理,得,又,所以,所以.考點(diǎn):正余弦定理的綜合應(yīng)用及面積公式.18、(1)證明見解析,;(2),;(3).【解析】
(1)利用等差數(shù)列的定義可證明出數(shù)列是等差數(shù)列,并確定該數(shù)列的首項(xiàng)和公差,即可得出數(shù)列的通項(xiàng);(2)利用累加法求出數(shù)列的通項(xiàng),然后利用裂項(xiàng)法求出數(shù)列的前項(xiàng)和;(3)求出,然后分為正奇數(shù)和正偶數(shù)兩種情況分類討論,結(jié)合可得出實(shí)數(shù)的取值范圍.【詳解】(1),等式兩邊同時(shí)減去得,,且,所以,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,因此,;(2),,,;(3).當(dāng)為正奇數(shù)時(shí),,,由,得,可得,由于數(shù)列為單調(diào)遞減數(shù)列,;當(dāng)為正偶數(shù)時(shí),,,由,得,可得,由于數(shù)列為單調(diào)遞增數(shù)列,.因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用等差數(shù)列的定義證明等差數(shù)列,同時(shí)也考查了累加法求通項(xiàng)、裂項(xiàng)求和法以及利用數(shù)列的單調(diào)性求參數(shù),充分利用單調(diào)性的定義來求解,考查運(yùn)算求解能力,屬于中等題.19、(1)(2)證明見解析【解析】
(1)由題意列式求得數(shù)列的首項(xiàng)和公差,然后代入等差數(shù)列的通項(xiàng)公式得答案.
(2)求出數(shù)列的通項(xiàng),利用裂項(xiàng)相消法求出數(shù)列的前項(xiàng)和得答案.【詳解】(1)差數(shù)列中,,成等比數(shù)列有:即,得所以又,即,.所以.(2)所以.所以所以【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,等比數(shù)列的性質(zhì),裂項(xiàng)相消法求數(shù)列的前項(xiàng)和,是中檔題.20、(1)(2)當(dāng)點(diǎn)為時(shí),直線與直線關(guān)于軸對(duì)稱,詳見解析【解析】
(1)設(shè)圓的方程為,由垂徑定理求得弦長(zhǎng),再由弦長(zhǎng)為可求得,從而得圓的方程;(2)假設(shè)存在定點(diǎn),使得直線與直線關(guān)于軸對(duì)稱,則,同時(shí)設(shè),直線方程代入圓方程后用韋達(dá)定理得,即為,代入可求得,說明存在.【詳解】(1)設(shè)圓的方程為:圓心到直線的距離根據(jù)垂徑定理得,,解得,,故圓的方程為(2)假設(shè)存在定點(diǎn),使得直線與直線關(guān)于軸對(duì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位人力資源管理制度精彩大全
- 醫(yī)療合作項(xiàng)目合同管理準(zhǔn)則
- 高層住宅外墻清洗項(xiàng)目招投標(biāo)
- 網(wǎng)絡(luò)營(yíng)銷企業(yè)薪酬管理
- 居民區(qū)通風(fēng)設(shè)備安裝合同
- 天津市養(yǎng)老社區(qū)物業(yè)醫(yī)療服務(wù)規(guī)范
- 紡織服裝弱電施工合同
- 廣東省廣州市天河區(qū)2023-2024學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版)
- 羅定職業(yè)技術(shù)學(xué)院《田徑AⅡ》2023-2024學(xué)年第一學(xué)期期末試卷
- 酒店工程塔吊施工協(xié)議
- 國(guó)際金融課后習(xí)題答案(吳志明第五版)第1-9章
- 《WPS演示制作與設(shè)計(jì)》計(jì)算機(jī)應(yīng)用基礎(chǔ)高職專科一等獎(jiǎng)(含課件制作試題及答案)
- 大英縣“互聯(lián)網(wǎng)+智慧教育”建設(shè)項(xiàng)目 ?招標(biāo)文件(采購(gòu))
- GB/T 7533-1993有機(jī)化工產(chǎn)品結(jié)晶點(diǎn)的測(cè)定方法
- GB/T 6728-2017結(jié)構(gòu)用冷彎空心型鋼
- 紅色喜慶新年快樂企業(yè)年會(huì)PPT
- 智慧港口信息化平臺(tái)建設(shè)方案
- 水土保持工程學(xué)課程設(shè)計(jì)
- 《牛常見病防治技術(shù)》課件
- 腰椎骨折的圍手術(shù)期護(hù)理詳解演示文稿
- 變壓器變比測(cè)試課件
評(píng)論
0/150
提交評(píng)論