![2024屆浙江省余姚市第四中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第1頁](http://file4.renrendoc.com/view5/M00/37/14/wKhkGGZf1I6AC7dxAAGVnF36f7U911.jpg)
![2024屆浙江省余姚市第四中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第2頁](http://file4.renrendoc.com/view5/M00/37/14/wKhkGGZf1I6AC7dxAAGVnF36f7U9112.jpg)
![2024屆浙江省余姚市第四中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第3頁](http://file4.renrendoc.com/view5/M00/37/14/wKhkGGZf1I6AC7dxAAGVnF36f7U9113.jpg)
![2024屆浙江省余姚市第四中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第4頁](http://file4.renrendoc.com/view5/M00/37/14/wKhkGGZf1I6AC7dxAAGVnF36f7U9114.jpg)
![2024屆浙江省余姚市第四中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第5頁](http://file4.renrendoc.com/view5/M00/37/14/wKhkGGZf1I6AC7dxAAGVnF36f7U9115.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省余姚市第四中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.的值等于()A. B.- C. D.-2.已知數(shù)列的前項和為,且滿足,,則()A. B. C. D.3.已知直線m,n,平面α,β,給出下列命題:①若m⊥α,n⊥β,且m⊥n,則α⊥β②若m∥α,n∥β,且m∥n,則α∥β③若m∥α,n∥β,且α∥β,且m∥n④若m⊥α,n⊥β,且α⊥β,則m⊥n其中正確的命題是()A.②③ B.①③ C.①④ D.③④4.運行如圖程序,若輸入的是,則輸出的結(jié)果是()A.3 B.9 C.0 D.5.設(shè),則()A.3 B.2 C.1 D.06.若點(m,n)在反比例函數(shù)y=的圖象上,其中m<0,則m+3n的最大值等于()A.2 B.2 C.﹣2 D.﹣27.若等差數(shù)列和的公差均為,則下列數(shù)列中不為等差數(shù)列的是()A.(為常數(shù)) B.C. D.8.某協(xié)會有200名會員,現(xiàn)要從中抽取40名會員作樣本,采用系統(tǒng)抽樣法等間距抽取樣本,將全體會員隨機(jī)按1~200編號,并按編號順序平均分為40組(1-5號,6-10號,…,196-200號).若第5組抽出的號碼為22,則第1組至第3組抽出的號碼依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,129.在平行四邊形ABCD中,,,E是CD的中點,則()A.2 B.-3 C.4 D.610.設(shè)向量,若,則實數(shù)的值為()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角、、所對應(yīng)邊分別為、、,,的平分線交于點,且,則的最小值為______12.已知向量(1,2),(x,4),且∥,則_____.13.若直線與曲線相交于A,B兩點,O為坐標(biāo)原點,當(dāng)?shù)拿娣e取最大值時,實數(shù)m的取值____.14.在銳角中,角、、所對的邊為、、,若的面積為,且,,則的弧度為__________.15.已知,,,則的最小值為__________.16.直線的傾斜角為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量(),向量,,且.(Ⅰ)求向量;(Ⅱ)若,,求.18.已知數(shù)列為單調(diào)遞增數(shù)列,,其前項和為,且滿足.(1)求數(shù)列的通項公式;(2)若數(shù)列,其前項和為,若成立,求的最小值.19.如圖,在四棱錐中,平面,,,,點Q在棱AB上.(1)證明:平面.(2)若三棱錐的體積為,求點B到平面PDQ的距離.20.已知,,分別為內(nèi)角,,的對邊,且.(1)求角;(2)若,,求邊上的高.21.在中,內(nèi)角A,B,C的對邊分別為a,b,c,已知.求A;已知,的面積為的周長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
利用誘導(dǎo)公式把化簡成.【詳解】【點睛】本題考查誘導(dǎo)公式的應(yīng)用,即把任意角的三角函數(shù)轉(zhuǎn)化成銳角三角函數(shù),考查基本運算求解能力.2、B【解析】
由可知,數(shù)列隔項成等比數(shù)列,從而得到結(jié)果.【詳解】由可知:當(dāng)n≥2時,,兩式作商可得:∴奇數(shù)項構(gòu)成以1為首項,2為公比的等比數(shù)列,偶數(shù)項構(gòu)成以2為首項,2為公比的等比數(shù)列,∴故選:B【點睛】本題考查數(shù)列的遞推關(guān)系,考查隔項成等比,考查分析問題解決問題的能力,屬于中檔題.3、C【解析】
根據(jù)線線、線面和面面有關(guān)定理,對選項逐一分析,由此得出正確選項.【詳解】對于①,兩個平面的垂線垂直,那么這兩個平面垂直.所以①正確.對于②,與可能相交,此時并且與兩個平面的交線平行.所以②錯誤.對于③,直線可能為異面直線,所以③錯誤.對于④,兩個平面垂直,那么這兩個平面的垂線垂直.所以④正確.綜上所述,正確命題的序號為①④.故選:C【點睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.4、B【解析】分析:首先根據(jù)框圖中的條件,判斷-2與1的大小,從而確定出代入哪個解析式,從而求得最后的結(jié)果,得到輸出的值.詳解:首先判斷成立,代入中,得到,從而輸出的結(jié)果為9,故選B.點睛:該題考查的是有關(guān)程序框圖的問題,在解題的過程中,需要注意的是要明確自變量的范圍,對應(yīng)的函數(shù)解析式應(yīng)該代入哪個,從而求得最后的結(jié)果,屬于簡單題目.5、B【解析】
先求內(nèi)層函數(shù),將所求值代入分段函數(shù)再次求解即可【詳解】,則故選:B【點睛】本題考查分段函數(shù)具體函數(shù)值的求法,屬于基礎(chǔ)題6、C【解析】
根據(jù)題意可得出,再根據(jù)可得,將添上兩個負(fù)號運用基本不等式,即可求解.【詳解】由題意,可得,因為,所以,所以,當(dāng)且僅當(dāng),即時,等號成立,故選:C.【點睛】本題主要考查了基本不等式的應(yīng)用,其中解答中熟記基本不等式的使用條件,合理運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.7、D【解析】
利用等差數(shù)列的定義對選項逐一進(jìn)行判斷,可得出正確的選項.【詳解】數(shù)列和是公差均為的等差數(shù)列,則,,.對于A選項,,數(shù)列(為常數(shù))是等差數(shù)列;對于B選項,,數(shù)列是等差數(shù)列;對于C選項,,所以,數(shù)列是等差數(shù)列;對于D選項,,不是常數(shù),所以,數(shù)列不是等差數(shù)列.故選:D.【點睛】本題考查等差數(shù)列的定義和通項公式,注意等差數(shù)列定義的應(yīng)用,考查推理能力,屬于中等題.8、B【解析】
根據(jù)系統(tǒng)抽樣原理求出抽樣間距,再根據(jù)第5組抽出的號碼求出第1組抽出的號碼,即可得出第2組、第3組抽取的號碼.【詳解】根據(jù)系統(tǒng)抽樣原理知,抽樣間距為200÷40=5,
當(dāng)?shù)?組抽出的號碼為22時,即22=4×5+2,
所以第1組至第3組抽出的號碼依次是2,7,1.
故選:B.【點睛】本題考查了系統(tǒng)抽樣方法的應(yīng)用問題,是基礎(chǔ)題.9、A【解析】
由平面向量的線性運算可得,再結(jié)合向量的數(shù)量積運算即可得解.【詳解】解:由,,所以,,,則,故選:A.【點睛】本題考查了平面向量的線性運算,重點考查了向量的數(shù)量積運算,屬中檔題.10、B【解析】
首先求出的坐標(biāo),再根據(jù)平面向量共線定理解答.【詳解】解:,因為,所以,解得.故選:【點睛】本題考查平面向量共線定理的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、18【解析】
根據(jù)三角形面積公式找到的關(guān)系,結(jié)合基本不等式即可求得最小值.【詳解】根據(jù)題意,,因為的平分線交于點,且,所以而所以,化簡得則當(dāng)且僅當(dāng),即,時取等號,即最小值為.故答案為:【點睛】本題考查三角形面積公式和基本不等式,考查計算能力,屬于中等題型12、.【解析】
根據(jù)求得,從而可得,再求得的坐標(biāo),利用向量模的公式,即可求解.【詳解】由題意,向量,則,解得,所以,則,所以.【點睛】本題主要考查了向量平行關(guān)系的應(yīng)用,以及向量的減法和向量的模的計算,其中解答中熟記向量的平行關(guān)系,以及向量的坐標(biāo)運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、【解析】
點O到的距離,將的面積用表示出來,再利用均值不等式得到答案.【詳解】曲線表示圓心在原點,半徑為1的圓的上半圓,若直線與曲線相交于A,B兩點,則直線的斜率,則點O到的距離,又,當(dāng)且僅當(dāng),即時,取得最大值.所以,解得舍去).故答案為.【點睛】本題考查了點到直線的距離,三角形面積,均值不等式,意在考查學(xué)生的計算能力.14、【解析】
利用三角形的面積公式求出的值,結(jié)合角為銳角,可得出角的弧度數(shù).【詳解】由三角形的面積公式可知,的面積為,得,為銳角,因此,的弧度數(shù)為,故答案為.【點睛】本題考查三角形面積公式的應(yīng)用,考查運算求解能力,屬于基礎(chǔ)題.15、25【解析】
變形后,利用基本不等式可得.【詳解】當(dāng)且僅當(dāng),即,時取等號.故答案為:25【點睛】本題考查了利用基本不等式求最值,屬于基礎(chǔ)題.16、【解析】
先求得直線的斜率,進(jìn)而求得直線的傾斜角.【詳解】由于直線的斜率為,故傾斜角為.【點睛】本小題主要考查由直線一般式方程求斜率,考查斜率和傾斜角的對應(yīng)關(guān)系,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)∵,,∵,∴,即,①又,②由①②聯(lián)立方程解得,,.∴;(Ⅱ)∵,即,,∴,,又∵,,∴.18、(1);(2)10.【解析】
(1)先根據(jù)和項與通項關(guān)系得項之間遞推關(guān)系,再根據(jù)等差數(shù)列定義及其通項公式得數(shù)列的通項公式;(2)先根據(jù)裂項相消法求,再解不等式得,即得的最小值.【詳解】(1)由知:,兩式相減得:,即,又?jǐn)?shù)列為單調(diào)遞增數(shù)列,,∴,∴,又當(dāng)時,,即,解得或(舍),符合,∴是以1為首項,以2為公差的等差數(shù)列,∴.(2),∴,又∵,即,解得,又,所以的最小值為10.點睛:裂項相消法是指將數(shù)列的通項分成兩個式子的代數(shù)差的形式,然后通過累加抵消中間若干項的方法,裂項相消法適用于形如(其中是各項均不為零的等差數(shù)列,c為常數(shù))的數(shù)列.裂項相消法求和,常見的有相鄰兩項的裂項求和(如本例),還有一類隔一項的裂項求和,如或.19、(1)證明見解析;(2).【解析】
(1)線面垂直只需證明PD和平面內(nèi)兩條相交直線垂直即可,易得,另外中已知三邊長通過勾股定理易得,所以平面.(2)點B到平面PDQ的距離通過求得三棱錐的體積和面積即可,而,帶入數(shù)據(jù)求解即可.【詳解】(1)證明:在中,,,所以.所以是直角三角形,且,即.因為平面PAD,平面PAD,所以.因為,所以平面ABCD.(2)解:設(shè).因為.,所以的面積為.因為平面ABCD,所以三棱錐的體積為,解得.因為,所以,所以的面積為.則三棱錐的體積為.在中,,,,則.設(shè)點B到平面PDQ的距離為h,則,解得,即點B到平面PDQ的距離為.【點睛】此題考察立體幾何的證明,線面垂直只需證明線與平面內(nèi)的兩條相交直線分別垂直即可,第二問考察了三棱錐等體積法,通過變化頂點和底面進(jìn)行轉(zhuǎn)化,屬于中檔題目.20、(1);(2)【解析】
(1)利用正弦定理化簡已知條件,利用三角形內(nèi)角和定理以及兩角和的正弦公式化簡,由此求得,進(jìn)而求得的大小.(2)利用正弦定理求得,進(jìn)而求得的大小,由此求得的值,根據(jù)求得邊上的高.【詳解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴設(shè)邊上的高為,則有【點睛】本小題主要考查利用正弦定理進(jìn)行邊角互化,考查利用正弦定理解三角形,考查三角恒等變換,考查特殊角的三角函數(shù)值,屬于中檔題.21、(1);(2)【解析】
(1)在中,由正弦定理及題設(shè)條件,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國蔬菜大棚管行業(yè)投資前景及策略咨詢研究報告
- 2025年濕膜暗裝式加濕器項目可行性研究報告
- 2025年雜物盒組件項目可行性研究報告
- 2025至2031年中國復(fù)合緊襯抗負(fù)壓管道行業(yè)投資前景及策略咨詢研究報告
- 延安2024年陜西延安市縣以下醫(yī)療衛(wèi)生機(jī)構(gòu)定向招聘大學(xué)生鄉(xiāng)村醫(yī)生補(bǔ)錄27人筆試歷年參考題庫附帶答案詳解
- 2025年冷軋鋼材料項目可行性研究報告
- 2025年不干膠條碼標(biāo)簽紙項目可行性研究報告
- 2025至2030年高光外墻水性漆項目投資價值分析報告
- 2025至2030年中國銅包鋁鎂線數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國酒店財務(wù)管理系統(tǒng)數(shù)據(jù)監(jiān)測研究報告
- 江蘇省鹽城市鹿鳴路初級中學(xué)2024-2025學(xué)年八年級上學(xué)期期末考試語文試題(含答案)
- 《反家庭暴力》課件
- 【物理】《跨學(xué)科實踐:制作簡易桿秤》(教學(xué)設(shè)計)-2024-2025學(xué)年人教版(2024)初中物理八年級下冊
- 新蘇教版一年級數(shù)學(xué)下冊第六單元《簡單的數(shù)量關(guān)系(一)》教案(共2課時)
- GA/T 2146-2024法庭科學(xué)涉火案件物證檢驗移動實驗室建設(shè)通用要求
- 2025年浙江省國土空間規(guī)劃研究院招聘歷年高頻重點提升(共500題)附帶答案詳解
- 2024-2025學(xué)年成都市石室聯(lián)中七年級上英語期末考試題(含答案)
- 2025年度服務(wù)外包合同:銀行呼叫中心服務(wù)外包協(xié)議3篇
- 7.1力教學(xué)課件-2024-2025學(xué)年初中物理人教版八年級下冊
- 【課件】跨學(xué)科實踐制作微型密度計++課件人教版物理八年級下冊
- 北師大版五年級數(shù)學(xué)下冊第4課時體積單位的換算課件
評論
0/150
提交評論