2024屆昆明市第二中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2024屆昆明市第二中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2024屆昆明市第二中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2024屆昆明市第二中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2024屆昆明市第二中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆昆明市第二中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.同時擲兩枚骰子,所得點數(shù)之和為5的概率為()A. B. C. D.2.已知圓C與直線和直線都相切,且圓心C在直線上,則圓C的方程是()A. B.C. D.3.已知向量,且,則的值為()A.6 B.-6 C. D.4.若實數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.5.半徑為的半圓卷成一個圓錐,它的體積是()A. B. C. D.6.在中,A,B,C的對邊分別為a,b,c,,則的形狀一定是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.等腰直角三角形7.為了了解所加工的一批零件的長度,抽測了其中個零件的長度,在這個工作中,個零件的長度是()A.總體 B.個體 C.樣本容量 D.總體的一個樣本8.已知之間的幾組數(shù)據(jù)如下表:

1

2

3

4

5

6

0

2

1

3

3

4

假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為中的前兩組數(shù)據(jù)和求得的直線方程為則以下結(jié)論正確的是()A. B. C. D.9.已知數(shù)列為等差數(shù)列,若,則()A. B. C. D.10.已知直線l1:ax+2y+8=0與l2:x+(a-1)y+a2-1=0平行,則實數(shù)a的取值是()A.-1或2 B.-1 C.0或1 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的通項公式是,若將數(shù)列中的項從小到大按如下方式分組:第一組:,第二組:,第三組:,…,則2018位于第________組.12.已知圓上有兩個點到直線的距離為3,則半徑的取值范圍是________13.設(shè)函數(shù),則________.14.利用直線與圓的有關(guān)知識求函數(shù)的最小值為_______.15.已知關(guān)于實數(shù)x,y的不等式組構(gòu)成的平面區(qū)域為,若,使得恒成立,則實數(shù)m的最小值是______.16.已知線段上有個確定的點(包括端點與).現(xiàn)對這些點進(jìn)行往返標(biāo)數(shù)(從…進(jìn)行標(biāo)數(shù),遇到同方向點不夠數(shù)時就“調(diào)頭”往回數(shù)).如圖:在點上標(biāo),稱為點,然后從點開始數(shù)到第二個數(shù),標(biāo)上,稱為點,再從點開始數(shù)到第三個數(shù),標(biāo)上,稱為點(標(biāo)上數(shù)的點稱為點),……,這樣一直繼續(xù)下去,直到,,,…,都被標(biāo)記到點上,則點上的所有標(biāo)記的數(shù)中,最小的是_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足:,(1)求,的值;(2)求數(shù)列的通項公式;(3)設(shè),數(shù)列的前n項和,求證:18.設(shè)數(shù)列滿足.(1)求的通項公式;(2)求數(shù)列的前項和.19.如圖扇形的圓心角,半徑為2,E為弧AB的中點C?D為弧AB上的動點,且,記,四邊形ABCD的面積為.(1)求函數(shù)的表達(dá)式及定義域;(2)求的最大值及此時的值20.(1)設(shè),直接用任意角的三角比定義證明:.(2)給出兩個公式:①;②.請僅以上述兩個公式為已知條件證明:.21.在平面直角坐標(biāo)系中,直線截以原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點,當(dāng)長最小時,求直線的方程;(3)設(shè)是圓上任意兩點,點關(guān)于軸的對稱點,若直線分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

求出基本事件空間,找到符合條件的基本事件,可求概率.【詳解】同時擲兩枚骰子,所有可能出現(xiàn)的結(jié)果有:共有36種,點數(shù)之和為5的基本事件有:共4種;所以所求概率為.故選C.【點睛】本題主要考查古典概率的求解,側(cè)重考查數(shù)學(xué)建模的核心素養(yǎng).2、B【解析】

設(shè)出圓的方程,利用圓心到直線的距離列出方程求解即可【詳解】∵圓心在直線上,∴可設(shè)圓心為,設(shè)所求圓的方程為,則由題意,解得∴所求圓的方程為.選B【點睛】直線與圓的問題絕大多數(shù)都是轉(zhuǎn)化為圓心到直線的距離公式進(jìn)行求解3、A【解析】

兩向量平行,內(nèi)積等于外積。【詳解】,所以選A.【點睛】本題考查兩向量平行的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題。4、D【解析】畫出表示的可行域,如圖所示的開放區(qū)域,平移直線,由圖可知,當(dāng)直線經(jīng)過時,直線在縱軸上的截距取得最大值,此時有最小值,無最大值,的取值范圍是,故選A.【方法點晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.5、A【解析】

根據(jù)圓錐的底面圓周長等于半圓弧長可計算出圓錐底面圓半徑,由勾股定理可計算出圓錐的高,再利用錐體體積公式可計算出圓錐的體積.【詳解】設(shè)圓錐的底面圓半徑為,高為,則圓錐底面圓周長為,得,,所以,圓錐的體積為,故選:A.【點睛】本題考查圓錐體積的計算,解題的關(guān)鍵就是要計算出圓錐底面圓的半徑和高,解題時要從已知條件列等式計算,并分析出一些幾何等量關(guān)系,考查空間想象能力與計算能力,屬于中等題.6、A【解析】

利用平方化倍角公式和邊化角公式化簡得到,結(jié)合三角形內(nèi)角和定理化簡得到,即可確定的形狀.【詳解】化簡得即即是直角三角形故選A【點睛】本題考查了平方化倍角公式和正弦定理的邊化角公式,在化簡時,將邊化為角,使邊角混雜變統(tǒng)一,還有三角形內(nèi)角和定理的運(yùn)用,這一點往往容易忽略.7、D【解析】

根據(jù)總體與樣本中的相關(guān)概念進(jìn)行判斷.【詳解】由題意可知,在這個工作中,個零件的長度是總體的一個樣本,故選D.【點睛】本題考查總體與樣本中相關(guān)概念的理解,屬于基礎(chǔ)題.8、C【解析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′9、D【解析】

由等差數(shù)列的性質(zhì)可得a7=,而tan(a2+a12)=tan(2a7),代值由三角函數(shù)公式化簡可得.【詳解】∵數(shù)列{an}為等差數(shù)列且a1+a7+a13=4π,∴a1+a7+a13=3a7=4π,解得a7=,∴tan(a2+a12)=tan(2a7)=tan=tan(3π﹣)=﹣tan=﹣故選D.【點睛】本題考查等差數(shù)列的性質(zhì),涉及三角函數(shù)中特殊角的正切函數(shù)值的運(yùn)算,屬基礎(chǔ)題.10、A【解析】

【詳解】,選A.【點睛】本題考查由兩直線平行求參數(shù).二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

根據(jù)題意可分析第一組、第二組、第三組、…中的數(shù)的個數(shù)及最后的數(shù),從中尋找規(guī)律使問題得到解決.【詳解】根據(jù)題意:第一組有2=1×2個數(shù),最后一個數(shù)為4;第二組有4=2×2個數(shù),最后一個數(shù)為12,即2×(2+4);第三組有6=2×3個數(shù),最后一個數(shù)為24,即2×(2+4+6);…∴第n組有2n個數(shù),其中最后一個數(shù)為2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴當(dāng)n=31時,第31組的最后一個數(shù)為2×31×1=1984,∴當(dāng)n=1時,第1組的最后一個數(shù)為2×1×33=2112,∴2018位于第1組.故答案為1.【點睛】本題考查觀察與分析問題的能力,考查歸納法的應(yīng)用,從有限項得到一般規(guī)律是解決問題的關(guān)鍵點,屬于中檔題.12、【解析】

由圓上有兩個點到直線的距離為3,先求出圓心到直線的距離,得到不等關(guān)系式,即可求解.【詳解】由題意,圓的圓心坐標(biāo)為,半徑為,則圓心到直線的距離為,又因為圓上有兩個點到直線的距離為3,則,解得,即圓的半徑的取值范圍是.【點睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,其中解答中合理應(yīng)用圓心到直線的距離,結(jié)合圖象得到半徑的不等關(guān)系式是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運(yùn)算能力,屬于中檔試題.13、【解析】

利用反三角函數(shù)的定義,解方程即可.【詳解】因為函數(shù),由反三角函數(shù)的定義,解方程,得,所以.故答案為:【點睛】本題考查了反三角函數(shù)的定義,屬于基礎(chǔ)題.14、【解析】

令得,轉(zhuǎn)化為z==,再利用圓心到直線距離求最值即可【詳解】令,則故轉(zhuǎn)化為z==,表示上半個圓上的點到直線的距離的最小值的5倍,即故答案為3【點睛】本題考查直線與圓的位置關(guān)系,點到直線的距離公式,考查數(shù)形結(jié)合思想,是中檔題15、【解析】

由,使得恒成立可知,只需求出的最大值即可,再由表示平面區(qū)域內(nèi)的點與定點距離的平方,因此結(jié)合平面區(qū)域即可求出結(jié)果.【詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標(biāo)函數(shù),則目標(biāo)函數(shù)表示平面區(qū)域內(nèi)的點與定點距離的平方,由圖像易知,點到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【點睛】本題主要考查簡單的線性規(guī)劃問題,只需分析清楚目標(biāo)函數(shù)的幾何意義,即可結(jié)合可行域來求解,屬于常考題型.16、【解析】

將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標(biāo)記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標(biāo)為2019,則,令,即可得.【詳解】依照題意知,標(biāo)有2的是1+2,標(biāo)有3的是1+2+3,……,標(biāo)有2019的是1+2+3+……+2019,將將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標(biāo)記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標(biāo)為2019,,令,,解得,故點上的所有標(biāo)記的數(shù)中,最小的是3.【點睛】本題主要考查利用合情推理,分析解決問題的能力.意在考查學(xué)生的邏輯推理能力,三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);;(2)(3)見證明;【解析】

(1)令可求得;(2)在已知等式基礎(chǔ)上,用代得另一等式,然后相減,可求得,并檢驗一下是否適合此表達(dá)式;(3)用裂項相消法求和.【詳解】解:(1)由已知得,∴(2)由,①得時,,②①-②得∴,也適合此式,∴().(3)由(2)得,∴∴∵,∴∴【點睛】本題考查由數(shù)列的通項公式,考查裂項相消法求和.求通項公式時的方法與已知求的方法一樣,本題就相當(dāng)于已知數(shù)列的前項和,要求.注意首項求法的區(qū)別.18、(1);(1).【解析】

(1)在中,將代得:,由兩式作商得:,問題得解.(1)利用(1)中結(jié)果求得,分組求和,再利用等差數(shù)列前項和公式及乘公比錯位相減法分別求和即可得解.【詳解】(1)由n=1得,因為,當(dāng)n≥1時,,由兩式作商得:(n>1且n∈N*),又因為符合上式,所以(n∈N*).(1)設(shè),則bn=n+n·1n,所以Sn=b1+b1+…+bn=(1+1+…+n)+設(shè)Tn=1+1·11+3·13+…+(n-1)·1n-1+n·1n,①所以1Tn=11+1·13+…(n-1)·1n-1+(n-1)·1n+n·1n+1,②①-②得:-Tn=1+11+13+…+1n-n·1n+1,所以Tn=(n-1)·1n+1+1.所以,即.【點睛】本題主要考查了賦值法及方程思想,還考查了分組求和法及乘公比錯位相減法求和,考查計算能力及轉(zhuǎn)化能力,屬于中檔題.19、(1)(2)當(dāng)時,取最大值.【解析】

(1)取OE與DC?AB的交點分別為M?N,在中,分別求出,,再利用梯形的面積公式求解即可;(2)令,則,,再求最值即可.【詳解】解:(1),OE與DC?AB的交點分別為M?N,由已知可知,在中,.,,梯形ABCD的高,則.(2)設(shè),則,,則,,則.,當(dāng)時,,此時,即,,,,故.故的最大值為,此時.【點睛】本題考查了三角函數(shù)的應(yīng)用,重點考查了運(yùn)算能力,屬中檔題20、(1)證明見解析(2)證明見解析【解析】

(1)直接利用任意角的三角函數(shù)的定義證得.(2)由已知條件利用誘導(dǎo)公式,證明.【詳解】解:(1)將角的頂點置于平面直角坐標(biāo)系的原點,始邊與軸的正半軸重合,設(shè)角終邊一點(非原點),其坐標(biāo)為.∵,∴,.(2)由于,將換成后,就有即,.【點睛】本題主要考查任意角的三角函數(shù)的定義、誘導(dǎo)公式,屬于基礎(chǔ)題.21、(1);(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論