河南省豫南六市2025屆高一下數(shù)學期末監(jiān)測試題含解析_第1頁
河南省豫南六市2025屆高一下數(shù)學期末監(jiān)測試題含解析_第2頁
河南省豫南六市2025屆高一下數(shù)學期末監(jiān)測試題含解析_第3頁
河南省豫南六市2025屆高一下數(shù)學期末監(jiān)測試題含解析_第4頁
河南省豫南六市2025屆高一下數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省豫南六市2025屆高一下數(shù)學期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.,,是空間三條不同的直線,則下列命題正確的是A., B.,C.,,共面 D.,,共點,,共面2.已知角的頂點在原點,始邊與軸的正半軸重合,終邊落在射線上,則()A. B. C. D.3.我國古代名著《九章算術》中有這樣一段話:“今有金錘,長五尺,斬本一尺,重四斤,斬末一尺,重二斤.”意思是:“現(xiàn)有一根金錘,長5尺,頭部1尺,重4斤,尾部1尺,重2斤”,若該金錘從頭到尾,每一尺的重量構成等差數(shù)列,該金錘共重多少斤?()A.6斤 B.7斤 C.9斤 D.15斤4.三棱錐則二面角的大小為()A. B. C. D.5.如果數(shù)據的平均數(shù)為,方差為,則的平均數(shù)和方差分別為()A. B. C. D.6.在中,是邊上一點,,且,則的值為()A. B. C. D.7.已知球面上有三點,如果,且球心到平面的距離為,則該球的體積為()A. B. C. D.8.設,則()A.3 B.2 C.1 D.09.在等差數(shù)列中,若公差,則()A. B. C. D.10.已知點P(,)為角的終邊上一點,則()A. B.- C. D.0二、填空題:本大題共6小題,每小題5分,共30分。11.已知一個幾何體的三視圖如圖所示,其中正視圖是等腰直角三角形,則該幾何體的體積為__________.12.有一個倒圓錐形容器,它的軸截面是一個正三角形,在容器內放一個半徑為的鐵球,并注入水,使水面與球正好相切,然后將球取出,則這時容器中水的深度為___________.13.設數(shù)列是等差數(shù)列,,,則此數(shù)列前20項和等于______.14.已知滿足約束條件,則的最大值為__15.已知常數(shù)θ∈(0,π2),若函數(shù)f(x)在Rf(x)=2sinπx-1≤x≤1log是________.16.已知數(shù)列的通項公式為,數(shù)列的通項公式為,設,若在數(shù)列中,對任意恒成立,則實數(shù)的取值范圍是_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在以、、、、、為頂點的五面體中,面是等腰梯形,,面是矩形,平面平面,,.(1)求證:平面平面;(2)若三棱錐的體積為,求的值.18.(1)已知圓經過和兩點,若圓心在直線上,求圓的方程;(2)求過點、和的圓的方程.19.若數(shù)列滿足:存在正整數(shù),對任意的,使得成立,則稱為階穩(wěn)增數(shù)列.(1)若由正整數(shù)構成的數(shù)列為階穩(wěn)增數(shù)列,且對任意,數(shù)列中恰有個,求的值;(2)設等比數(shù)列為階穩(wěn)增數(shù)列且首項大于,試求該數(shù)列公比的取值范圍;(3)在(1)的條件下,令數(shù)列(其中,常數(shù)為正實數(shù)),設為數(shù)列的前項和.若已知數(shù)列極限存在,試求實數(shù)的取值范圍,并求出該極限值.20.已知直線與圓相交于,兩點.(1)若,求;(2)在軸上是否存在點,使得當變化時,總有直線、的斜率之和為0,若存在,求出點的坐標:若不存在,說明理由.21.某體育老師隨機調查了100名同學,詢問他們最喜歡的球類運動,統(tǒng)計數(shù)據如表所示.已知最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和.最喜歡的球類運動足球籃球排球乒乓球羽毛球網球人數(shù)a201015b5(1)求的值;(2)將足球、籃球、排球統(tǒng)稱為“大球”,將乒乓球、羽毛球、網球統(tǒng)稱為“小球”.現(xiàn)按照喜歡大、小球的人數(shù)用分層抽樣的方式從調查的同學中抽取5人,再從這5人中任選2人,求這2人中至少有一人喜歡小球的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

解:因為如果一條直線平行于兩條垂線中的一條,必定垂直于另一條.選項A,可能相交.選項C中,可能不共面,比如三棱柱的三條側棱,選項D,三線共點,可能是棱錐的三條棱,因此錯誤.選B.2、D【解析】

在的終邊上取點,然后根據三角函數(shù)的定義可求得答案.【詳解】在的終邊上取點,則,根據三角形函數(shù)的定義得.故選:D【點睛】本題考查了利用角的終邊上的點的坐標求三角函數(shù)值,屬于基礎題.3、D【解析】

直接利用等差數(shù)列的求和公式求解即可.【詳解】因為每一尺的重量構成等差數(shù)列,,,,數(shù)列的前5項和為.即金錘共重15斤,故選D.【點睛】本題主要考查等差數(shù)列求和公式的應用,意在考查運用所學知識解答實際問題的能力,屬于基礎題.4、B【解析】

P在底面的射影是斜邊的中點,設AB中點為D過D作DE垂直AC,垂足為E,則∠PED即為二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【詳解】因為AB=10,BC=8,CA=6所以底面為直角三角形又因為PA=PB=PC所以P在底面的射影為直角三角形ABC的外心,為AB中點.設AB中點為D過D作DE垂直AC,垂足為E,所以DE平行BC,且DEBC=4,所以∠PED即為二面角P﹣AC﹣B的平面角.因為PD為三角形PAB的中線,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小為60°故答案為60°.【點睛】本題考查的知識點是二面角的平面角及求法,確定出二面角的平面角是解答本題的關鍵.5、D【解析】

根據平均數(shù)和方差的公式,可推導出,,,的平均數(shù)和方差.【詳解】因為,所以,所以的平均數(shù)為;因為,所以,故選:D.【點睛】本題考查平均數(shù)與方差的公式計算,考查對概念的理解與應用,考查基本運算求解能力.6、D【解析】

根據,用基向量表示,然后與題目條件對照,即可求出.【詳解】由在中,是邊上一點,,則,即,故選.【點睛】本題主要考查了平面向量基本定理的應用及向量的線性運算.7、B【解析】

的外接圓半徑為球半徑球的體積為,故選B.8、B【解析】

先求內層函數(shù),將所求值代入分段函數(shù)再次求解即可【詳解】,則故選:B【點睛】本題考查分段函數(shù)具體函數(shù)值的求法,屬于基礎題9、B【解析】

根據等差數(shù)列的通項公式求解即可得到結果.【詳解】∵等差數(shù)列中,,公差,∴.故選B.【點睛】等差數(shù)列中的計算問題都可轉為基本量(首項和公差)來處理,運用公式時要注意項和項數(shù)的對應關系.本題也可求出等差數(shù)列的通項公式后再求出的值,屬于簡單題.10、A【解析】

根據余弦函數(shù)的定義,可直接得出結果.【詳解】因為點P(,)為角的終邊上一點,則.故選A【點睛】本題主要考查三角函數(shù)的定義,熟記概念即可,屬于基礎題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

首先根據三視圖還原幾何體,再計算體積即可.【詳解】由三視圖知:該幾何體是以底面是直角三角形,高為的三棱錐,直觀圖如圖所示:.故答案為:【點睛】本題主要考查三視圖還原直觀圖,同時考查了錐體的體積計算,屬于簡單題.12、15【解析】

根據球的半徑,先求得球的體積;根據圓與等邊三角形關系,設出的邊長為,由面積關系表示出圓錐的體積;設拿出鐵球后水面高度為,用表示出水的體積,由即可求得液面高度.【詳解】因為鐵球半徑為,所以由球的體積公式可得,設的邊長為,則由面積公式與內切圓關系可得,解得,則圓錐的高為.則圓錐的體積為,設拿出鐵球后的水面為,且到的距離為,如下圖所示:則由,可得,所以拿出鐵球后水的體積為,由,可知,解得,即將鐵球取出后容器中水的深度為15.故答案為:15.【點睛】本題考查了圓錐內切球性質的應用,球的體積公式及圓錐體積公式的求法,屬于中檔題.13、180【解析】

根據條件解得公差與首項,再代入等差數(shù)列求和公式得結果【詳解】因為,,所以,【點睛】本題考查等差數(shù)列通項公式以及求和公式,考查基本分析求解能力,屬基礎題14、【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】由約束條件作出可行域,如圖所示,化目標函數(shù)為,由圖可得,當直線過時,直線在軸上的截距最大,所以有最大值為.故答案為1.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關鍵,著重考查了數(shù)形結合思想,及推理與計算能力,屬于基礎題.15、15【解析】

根據f(-1【詳解】∵函數(shù)f(x)在R上恒有f(-1∴f-∴函數(shù)周期為4.∵常數(shù)θ∈(0,π∴cos∴函數(shù)y=f(x)-cosθ-1在區(qū)間[-5,14]上零點,即函數(shù)y=f(x)?(x∈[-5,14])與直線由f(x)=2sinπx由圖可知,在一個周期內,函數(shù)y=f(x)-cos故函數(shù)y=f(x)-cosθ-1在區(qū)間故填15.【點睛】本題主要考查了函數(shù)零點的個數(shù)判斷,涉及數(shù)形結合思想在解題中的運用,屬于難題.16、【解析】

首先分析題意,可知是取和中的最大值,且是該數(shù)列中的最小項,結合數(shù)列的單調性和數(shù)列的單調性可得出或,代入數(shù)列的通項公式即可求出實數(shù)的取值范圍.【詳解】由題意可知,是取和中的最大值,且是數(shù)列中的最小項.若,則,則前面不會有數(shù)列的項,由于數(shù)列是單調遞減數(shù)列,數(shù)列是單調遞增數(shù)列.,數(shù)列單調遞減,當時,必有,即.此時,應有,,即,解得.,即,得,此時;若,則,同理,前面不能有數(shù)列的項,即,當時,數(shù)列單調遞增,數(shù)列單調遞減,.當時,,由,即,解得.由,得,解得,此時.綜上所述,實數(shù)的取值范圍是.故答案為:.【點睛】本題考查利用數(shù)列的最小項求參數(shù)的取值范圍,同時也考查了數(shù)列中的新定義,解題的關鍵就是要分析出數(shù)列的單調性,利用一些特殊項的大小關系得出不等式組進行求解,考查分析問題和解決問題的能力,屬于難題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】

(1)由面面垂直的性質定理得出平面,可得出,再推導出,利用線面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推導出平面,計算出的面積,然后利用錐體體積公式可求得三棱錐的體積,進而得解.【詳解】(1)因為四邊形是矩形,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;(2)的面積為,,平面,所以,平面,,故.【點睛】本題考查面面垂直的證明,同時也考查了利用三棱錐體積求參數(shù),考查推理能力與計算能力,屬于中等題.18、(1);(2)【解析】

(1)由直線AB的斜率,中點坐標,寫出線段AB中垂線的直線方程,與直線x-2y-3=0聯(lián)立即可求出交點的坐標即為圓心的坐標,再根據兩點間的距離公式求出圓心到點A的距離即為圓的半徑,根據圓心坐標與半徑寫出圓的標準方程即可;(2)設圓的方程為,代入題中三點坐標,列方程組求解即可【詳解】(1)由點和點可得,線段的中垂線方程為.∵圓經過和兩點,圓心在直線上,∴,解得,即所求圓的圓心,∴半徑,所求圓的方程為;(2)設圓的方程為,∵圓過點、和,∴列方程組得解得,∴圓的方程為.【點睛】本題考查了圓的方程求解,考查了待定系數(shù)法及運算能力,屬于中檔題.19、(1);(2);(3).【解析】

(1)設,由題意得出,求出正整數(shù)的值即可;(2)根據定義可知等比數(shù)列中的奇數(shù)項構成的等比數(shù)列為階穩(wěn)增數(shù)列,偶數(shù)項構成的等比數(shù)列也為階穩(wěn)增數(shù)列,分和兩種情況討論,列出關于的不等式,解出即可;(3)求出,然后分、和三種情況討論,求出,結合數(shù)列的極限存在,求出實數(shù)的取值范圍.【詳解】(1)設,由于數(shù)列為階穩(wěn)增數(shù)列,則,對任意,數(shù)列中恰有個,則數(shù)列中的項依次為:、、、、、、、、、、、、、、、、,設數(shù)列中值為的最大項數(shù)為,則,由題意可得,即,,解得,因此,;(2)由于等比數(shù)列為階穩(wěn)增數(shù)列,即對任意的,,且.所以,等比數(shù)列中的奇數(shù)項構成的等比數(shù)列為階穩(wěn)增數(shù)列,偶數(shù)項構成的等比數(shù)列也為階穩(wěn)增數(shù)列.①當時,則等比數(shù)列中每項都為正數(shù),由可得,整理得,解得;②當時,(i)若為正奇數(shù),可設,則,由,得,即,整理得,解得;(ii)若為正偶數(shù)時,可設,則,由,得,即,整理得,解得.所以,當時,等比數(shù)列為階穩(wěn)增數(shù)列.綜上所述,實數(shù)的取值范圍是;(3),由(1)知,則.①當時,,,則,此時,數(shù)列的極限不存在;②當時,,,上式下式得,所以,,則.(i)若時,則,此時數(shù)列的極限不存在;(ii)當時,,此時,數(shù)列的極限存在.綜上所述,實數(shù)的取值范圍是.【點睛】本題考查數(shù)列新定義“階穩(wěn)增數(shù)列”的應用,涉及等比數(shù)列的單調性問題、數(shù)列極限的存在性問題,同時也考查了錯位相減法求和,解題的關鍵就是理解新

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論