江蘇如皋市江安鎮(zhèn)中心初中2023-2024學年高一下數學期末調研試題含解析_第1頁
江蘇如皋市江安鎮(zhèn)中心初中2023-2024學年高一下數學期末調研試題含解析_第2頁
江蘇如皋市江安鎮(zhèn)中心初中2023-2024學年高一下數學期末調研試題含解析_第3頁
江蘇如皋市江安鎮(zhèn)中心初中2023-2024學年高一下數學期末調研試題含解析_第4頁
江蘇如皋市江安鎮(zhèn)中心初中2023-2024學年高一下數學期末調研試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇如皋市江安鎮(zhèn)中心初中2023-2024學年高一下數學期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,網格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A. B. C. D.2.數列{an}滿足a1=1,an+1=2an+1(n∈N+),那么a4的值為().A.4 B.8 C.15 D.313.甲、乙兩名籃球運動員最近五場比賽的得分如莖葉圖所示,則()A.甲的中位數和平均數都比乙高B.甲的中位數和平均數都比乙低C.甲的中位數比乙的中位數高,但平均數比乙的平均數低D.甲的中位數比乙的中位數低,但平均數比乙的平均數高4.一只小狗在圖所示的方磚上走來走去,最終停在涂色方磚的概率為()A. B. C. D.5.在中,角的對邊分別是,若,則()A.5 B. C.4 D.36.若實數滿足,則的最小值為()A.4 B.8 C.16 D.327.已知向量,若,則()A.1 B. C.2 D.38.設等差數列,則等于()A.120 B.60 C.54 D.1089.若,且,恒成立,則實數的取值范圍是()A. B.C. D.10.得到函數的圖象,只需將的圖象()A.向左移動 B.向右移動 C.向左移動 D.向右移動二、填空題:本大題共6小題,每小題5分,共30分。11.在賽季季后賽中,當一個球隊進行完場比賽被淘汰后,某個籃球愛好者對該隊的7場比賽得分情況進行統(tǒng)計,如表:場次得分104為了對這個隊的情況進行分析,此人設計計算的算法流程圖如圖所示(其中是這場比賽的平均得分),輸出的的值______.12.夏季某座高山上的溫度從山腳起每升高100米降低0.8度,若山腳的溫度是36度,山頂的溫度是20度,則這座山的高度是________米13.在軸上有一點,點到點與點的距離相等,則點坐標為____________.14.等比數列前n項和為,若,則______.15.已知,且為第三象限角,則的值等于______;16.已知銳角的外接圓的半徑為1,,則的面積的取值范圍為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知平面向量,,.(1)若,求的值;(2)若,與共線,求實數的值.18.已知點,,動點滿足,記M的軌跡為曲線C.(1)求曲線C的方程;(2)過坐標原點O的直線l交C于P、Q兩點,點P在第一象限,軸,垂足為H.連結QH并延長交C于點R.(i)設O到直線QH的距離為d.求d的取值范圍;(ii)求面積的最大值及此時直線l的方程.19.某大學藝術專業(yè)400名學生參加某次測評,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數,將數據分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數小于70的概率;(Ⅱ)已知樣本中分數小于40的學生有5人,試估計總體中分數在區(qū)間[40,50)內的人數;20.已知直線經過兩條直線:和:的交點,直線:;(1)若,求的直線方程;(2)若,求的直線方程.21.如圖,在四棱錐中,平面平面,四邊形為矩形,,點,分別是,的中點.求證:(1)直線∥平面;(2)平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】,,.選B.點睛:空間幾何體體積問題的常見類型及解題策略(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解.(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉換法、分割法、補形法等方法進行求解.(3)若以三視圖的形式給出幾何體,則應先根據三視圖得到幾何體的直觀圖,然后根據條件求解.2、C【解析】試題分析:,,,故選C.考點:數列的遞推公式3、B【解析】

分別計算出兩組數據的中位數和平均數即可得出選項.【詳解】根據題意:甲的平均數為:,中位數為29,乙的平均數為:,中位數為30,所以甲的中位數和平均數都比乙低.故選:B【點睛】此題考查根據莖葉圖表示的數據分別辨析平均數和中位數的大小關系,分別計算求解即可得出答案.4、C【解析】

方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可計算出所求事件的概率.【詳解】由圖形可知,方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可知,小狗最終停在涂色方磚的概率為,故選:C.【點睛】本題考查利用幾何概型概率公式計算事件的概率,解題時要理解事件的基本類型,正確選擇古典概型和幾何概型概率公式進行計算,考查計算能力,屬于基礎題.5、D【解析】

已知兩邊及夾角,可利用余弦定理求出.【詳解】由余弦定理可得:,解得.故選D.【點睛】本題主要考查利用正余弦定理解三角形,注意根據條件選用合適的定理解決.6、B【解析】

由可以得到,利用基本不等式可求最小值.【詳解】因為,故,因為,故,故,當且僅當時等號成立,故的最小值為8,故選B.【點睛】應用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數式中沒有積為定值或和為定值,則需要對給定的代數變形以產生和為定值或積為定值的局部結構.求最值時要關注取等條件的驗證.7、B【解析】

可求出,根據即可得出,進行數量積的坐標運算即可求出x.【詳解】;∵;∴;解得.故選B.【點睛】本題考查向量垂直的充要條件,向量坐標的減法和數量積運算,屬于基礎題.8、C【解析】

題干中只有一個等式,要求前9項的和,可利用等差數列的性質解決?!驹斀狻?,選C.【點睛】題干中只有一個等式,要求前9項的和,可利用等差數列的性質解決。也可將等式全部化為的表達式,整體代換計算出9、A【解析】

將代數式與相乘,展開式利用基本不等式求出的最小值,將問題轉化為解不等式,解出即可.【詳解】由基本不等式得,當且僅當,即當時,等號成立,所以,的最小值為.由題意可得,即,解得.因此,實數的取值范圍是,故選A.【點睛】本題考查基本不等式的應用,考查不等式恒成立問題以及一元二次不等式的解法,對于不等式恒成立問題,常轉化為最值來處理,考查計算能力,屬于中等題.10、B【解析】

直接利用三角函數圖象的平移變換法則,對選項中的變換逐一判斷即可.【詳解】函數的圖象,向左平移個單位,得,錯;函數的圖象,向右平移個單位,得,對.函數的圖象,向左平移個單位,得,錯;函數的圖象,向右平移個單位,得,錯,故選B.【點睛】本題考查了三角函數的圖象,重點考查學生對三角函數圖象變換規(guī)律的理解與掌握,能否正確處理先周期變換后相位變換這種情況下圖象的平移問題,反映學生對所學知識理解的深度.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據題意,模擬程序框圖的運行過程,得出該程序運行的是求數據的標準差,即可求得答案.【詳解】模擬程序框圖的運行過程知,該程序運行的結果是求這個數據的標準差這組數據的平均數是方差是:標準差是故答案為:.【點睛】本題主要考查了根據程序框圖求輸出結果,解題關鍵是掌握程序框圖基礎知識和計算數據方差的解法,考查了分析能力和計算能力,屬于中檔題.12、2000【解析】

由題意得,溫度下降了,再求出這個溫度是由幾段100米得出來的,最后乘以100即可.【詳解】由題意得,這座山的高度為:米故答案為:2000【點睛】本題結合實際問題考查有理數的混合運算,解題關鍵是溫度差里有幾個0.8,屬于基礎題.13、【解析】

設點的坐標,根據空間兩點距離公式列方程求解.【詳解】由題:設,點到點與點的距離相等,所以,,,解得:,所以點的坐標為.故答案為:【點睛】此題考查空間之間坐標系中兩點的距離公式,根據公式列方程求解點的坐標,關鍵在于準確辨析正確計算.14、【解析】

根據等比數列的性質得到成等比,從而列出關系式,又,接著用表示,代入到關系式中,可求出的值.【詳解】因為等比數列的前n項和為,則成等比,且,所以,又因為,即,所以,整理得.故答案為:.【點睛】本題考查學生靈活運用等比數列的性質化簡求值,是一道基礎題。解決本題的關鍵是根據等比數列的性質得到成等比.15、【解析】

根據條件以及誘導公式計算出的值,再由的范圍計算出的值,最后根據商式關系:求得的值.【詳解】因為,所以,又因為且為第三象限角,所以,所以.故答案為:.【點睛】本題考查三角函數中的給值求值問題,中間涉及到誘導公式以及同角三角函數的基本關系,難度一般.三角函數中的求值問題,一定要注意角的范圍,避免出現(xiàn)多解.16、【解析】

由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面積公式,三角函數恒等變換的應用可求S△ABC═sin(2B﹣)+,由銳角三角形求B的范圍,進而利用正弦函數的圖象和性質即可得解.【詳解】解:∵銳角△ABC的外接圓的半徑為1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C為銳角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案為:(1,].【點睛】本題主要考查了正弦定理,三角形面積公式,三角函數恒等變換的應用,正弦函數的圖象和性質在解三角形中的應用,考查了計算能力和轉化思想,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)4.【解析】

(1)結合已知求得:,利用平面向量的模的坐標表示公式計算得解.(2)求得:,利用與共線可列方程,解方程即可.【詳解】解:(1),所以.(2),因為與共線,所以,解得.【點睛】本題主要考查了平面向量的模的坐標公式及平面向量平行的坐標關系,考查方程思想及計算能力,屬于基礎題.18、(1);(2)(i)(ii)面積最大值為,直線的方程為.【解析】

(1)根據題意列出方程求解即可(2)聯(lián)立直線與圓的方程,得出P、Q、H三點坐標,表示出QH直線方程,采用點到直線距離公式求解;利用圓的幾何關系,表示出三角形的底和高,再結合函數最值問題進行求解【詳解】(1)由及兩點距離公式,有,化簡整理得,.所以曲線C的方程為;(2)(i)設直線l的方程為;將直線l的方程與圓C的方程聯(lián)立,消去y,得(,解得因此,,,所以直線QH的方程為.到直線QH的距離,當時.,所以,(ii)過O作于D,則D為QR中點,且由(i)知,,,又由,故的面積,由,有,所以,當且僅當時,等號成立,且此時由(i)有,即.綜上,的面積最大值為的面積最大值為,且當面積最大時直線的方程為.【點睛】直線與圓的綜合類題型常采用點到直線距離公式、圓內構造的直角三角形,將代數問題與幾何問題進行有效結合,可大大降低解題難度.19、(Ⅰ)0.4;(Ⅱ)20.【解析】

(1)首先可以根據頻率分布直方圖得出樣本中分數不小于的頻率,然后算出樣本中分數小于的頻率,最后計算出分數小于的概率;(2)首先計算出樣本中分數不小于的頻率,然后計算出分數在區(qū)間內的人數,最后計算出總體中分數在區(qū)間內的人數?!驹斀狻浚?)根據頻率分布直方圖可知,樣本中分數不小于的頻率為,所以樣本中分數小于的頻率為.所以從總體的名學生中隨機抽取一人,其分數小于的概率估計為。(2)根據題意,樣本中分數不小于的頻率為,分數在區(qū)間內的人數為,所以總體中分數在區(qū)間內的人數估計為?!军c睛】遇到頻率分布直方圖問題時需要注意:在頻率分布直方圖中,小矩形的高表示頻率/組距,而不是頻率;利用頻率分布直方圖求眾數、中位數和平均數時,應注意三點:①最高的小長方形底邊中點的橫坐標即是眾數;②中位數左邊和右邊的小長方形的面積和是相等的;③平均數是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個小長方形的面積乘以小長方形底邊中點的橫坐標之和。20、(1);(2)【解析】

(1)先求出與的交點,再利用兩直線平行斜率相等求直線l(2)利用兩直線垂直斜率乘積等于-1求直線l【詳解】(1)由,得,∴與的交點為.設與直線平行的直線為,則,∴.∴所求直線方程為.(2)設與直線垂直的直線為,則,解得.∴所求直線方程為.【點睛】兩直線平行斜率相等,兩直線垂直斜率乘積等于-1.21、(1)見解析(2)見解析【解析】

(1)取中點,連接,,證得,利用線面平行的判定定理,即可證得直線∥平面;(2)利用線面垂直的判定定理,證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論