版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第八章立體幾何初步探究課3祖暅原理與柱體、錐體的體積知識提煉01祖暅原理:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.典例探究02【典例】利用祖暅原理推導(dǎo)半徑為R的球的體積公式時,可以構(gòu)造如圖②所示的幾何體M,幾何體M的底面半徑和高都為R,其底面和半球體的底面同在平面α內(nèi).設(shè)與平面α平行且距離為d的平面β截兩個幾何體得到兩個截面,請在圖②中用陰影畫出與圖①中陰影截面面積相等的圖形并給出證明.[解]
由題圖可知,圖①幾何體為半徑為R的半球,圖②幾何體為底面半徑和高都為R的圓柱中挖掉了一個圓錐,與圖①截面面積相等的圖形是圓環(huán)(如陰影部分).證明如下:在圖①中,設(shè)截面圓的圓心為O1,易得截面圓O1的面積為π(R2-d2),在圖②中,截面截圓錐得到的小圓的半徑為d,所以,圓環(huán)的面積為π(R2-d2),所以,截得的截面的面積相等.對點(diǎn)訓(xùn)練031.“冪勢既同,則積不容異.”這句話的意思是:兩個等高的幾何體,若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.如圖將底面直徑皆為2b,高皆為a的“橢半球體”和已被挖去了圓錐體的圓柱體放置于同一平面β上,用平行于平面β且與β任意距離d處的平面截兩個幾何體,可橫截得到一個圓面和一個圓環(huán)面,可以證明S圓=S環(huán)總成立.據(jù)此,當(dāng)b=2cm,a=3cm時“橢半球體”的體積是(
)√A.4πcm3
B.8πcm3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【《城市文化與城市可持續(xù)發(fā)展探究:以S市為例》10000字(論文)】
- 【《網(wǎng)上購物系統(tǒng)的設(shè)計與實(shí)現(xiàn)》13000字(論文)】
- 散學(xué)典禮家長感言(10篇)
- 師德師風(fēng)團(tuán)建心得體會(26篇)
- 市場部門工作總結(jié)(7篇)
- 2024年土地抵押合同例文(二篇)
- 2024年小產(chǎn)權(quán)房子合同范例(三篇)
- 2024年小學(xué)教科研工作計劃(二篇)
- 2024年大巴車租賃合同參考樣本(二篇)
- 2024年培優(yōu)補(bǔ)差工作計劃范文(五篇)
- 國有公司總部禮品管理辦法 模版
- 口腔頜面部檢查課件
- 2020年重癥醫(yī)學(xué)科病人呼吸心跳驟停演練方案及腳本
- 平衡記分卡應(yīng)用流程
- 呼吸道感染病毒培訓(xùn)課件
- 重癥超聲課件
- 物聯(lián)網(wǎng)信息安全知識考核試題與答案
- 軍樂隊(duì)樂器種類以及人員編制
- 車輛駕駛業(yè)務(wù)外包服務(wù)方案
- 高中化學(xué)選修4《化學(xué)反應(yīng)原理》全冊教案
- 現(xiàn)場粉塵清掃記錄表參考模板范本
評論
0/150
提交評論