![2025屆巢湖市重點中學(xué)數(shù)學(xué)高一下期末經(jīng)典模擬試題含解析_第1頁](http://file4.renrendoc.com/view2/M03/1D/01/wKhkFmZjSNeAQuDlAAHmyKAQjGc022.jpg)
![2025屆巢湖市重點中學(xué)數(shù)學(xué)高一下期末經(jīng)典模擬試題含解析_第2頁](http://file4.renrendoc.com/view2/M03/1D/01/wKhkFmZjSNeAQuDlAAHmyKAQjGc0222.jpg)
![2025屆巢湖市重點中學(xué)數(shù)學(xué)高一下期末經(jīng)典模擬試題含解析_第3頁](http://file4.renrendoc.com/view2/M03/1D/01/wKhkFmZjSNeAQuDlAAHmyKAQjGc0223.jpg)
![2025屆巢湖市重點中學(xué)數(shù)學(xué)高一下期末經(jīng)典模擬試題含解析_第4頁](http://file4.renrendoc.com/view2/M03/1D/01/wKhkFmZjSNeAQuDlAAHmyKAQjGc0224.jpg)
![2025屆巢湖市重點中學(xué)數(shù)學(xué)高一下期末經(jīng)典模擬試題含解析_第5頁](http://file4.renrendoc.com/view2/M03/1D/01/wKhkFmZjSNeAQuDlAAHmyKAQjGc0225.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆巢湖市重點中學(xué)數(shù)學(xué)高一下期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將函數(shù)的圖象向左平移個長度單位后,所得到的圖象關(guān)于軸對稱,則的最小值是()A. B. C. D.2.已知函數(shù)向左平移個單位長度后,其圖象關(guān)于軸對稱,則的最小值為()A. B. C. D.3.已知,與的夾角,則在方向上的投影是()A. B. C.1 D.4.的值等于()A. B. C. D.5.用輾轉(zhuǎn)相除法,計算56和264的最大公約數(shù)是().A.7 B.8 C.9 D.66.長方體共頂點的三個相鄰面面積分別為,這個長方體的頂點在同一個球面上,則這個球的表面積為()A. B. C. D.7.從1,2,3,…,9這個9個數(shù)中任取5個不同的數(shù),則這5個數(shù)的中位數(shù)是5的概率等于()A.57 B.59 C.28.方程的解所在區(qū)間是()A. B.C. D.9.在正方體中為底面的中心,為的中點,則異面直線與所成角的正弦值為()A. B. C. D.10.若三點共線,則()A.13 B. C.9 D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示,E,F(xiàn)分別是邊長為1的正方形的邊BC,CD的中點,將其沿AE,AF,EF折起使得B,D,C三點重合.則所圍成的三棱錐的體積為___________.12.圓上的點到直線的距離的最小值是______.13.設(shè)偶函數(shù)的部分圖像如圖所示,為等腰直角三角形,,則的值為________.14.已知函數(shù)在時取得最小值,則________.15.已知向量,,若,則__________.16.若、是方程的兩根,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.的內(nèi)角的對邊分別為.(1)求證:;(2)在邊上取一點P,若.求證:.18.平面四邊形中,.(1)若,求;(2)設(shè),若,求面積的最大值.19.已知為等邊角形,.點滿足,,.設(shè).試用向量和表示;若,求的值.20.如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點分別為,,為橢圓上一點,且垂直于軸,連結(jié)并延長交橢圓于另一點,設(shè).(1)若點的坐標(biāo)為,求橢圓的方程及的值;(2)若,求橢圓的離心率的取值范圍.21.如圖,四棱錐中,底面是直角梯形,,,,側(cè)面是等腰直角三角形,,平面平面,點分別是棱上的點,平面平面(Ⅰ)確定點的位置,并說明理由;(Ⅱ)求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
試題分析:由題意得,,令,可得函數(shù)的圖象對稱軸方程為,取是軸右側(cè)且距離軸最近的對稱軸,因為將函數(shù)的圖象向左平移個長度單位后得到的圖象關(guān)于軸對稱,的最小值為,故選B.考點:兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質(zhì).【方法點晴】本題主要考查了兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質(zhì),將三角函數(shù)圖象向左平移個單位,所得圖象關(guān)于軸對稱,求的最小值,著重考查了三角函數(shù)的化簡、三角函數(shù)圖象的對稱性等知識的靈活應(yīng)用,本題的解答中利用輔助角公式,化簡得到函數(shù),可取出函數(shù)的對稱軸,確定距離最近的點,即可得到結(jié)論.2、A【解析】
根據(jù)函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象關(guān)于軸對稱,即為偶函數(shù).,求得的最小值.【詳解】把函數(shù)向左平移個單位長度后.可得的圖象.再根據(jù)所得圖象關(guān)于軸對稱,即為偶函數(shù).所以即,當(dāng)時,的值最小.所以的最小值為:故選:A【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.3、A【解析】
根據(jù)向量投影公式計算即可【詳解】在方向上的投影是:故選:A【點睛】本題考查向量投影的概念及計算,屬于基礎(chǔ)題4、D【解析】
利用誘導(dǎo)公式先化簡,再利用差角的余弦公式化簡得解.【詳解】由題得原式=.故選D【點睛】本題主要考查誘導(dǎo)公式和差角的余弦公式化簡求值,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.5、B【解析】
根據(jù)輾轉(zhuǎn)相除法計算最大公約數(shù).【詳解】因為所以最大公約數(shù)是8,選B.【點睛】本題考查輾轉(zhuǎn)相除法,考查基本求解能力.6、A【解析】
設(shè)長方體的棱長為,球的半徑為,根據(jù)題意有,再根據(jù)球的直徑是長方體的體對角線求解.【詳解】設(shè)長方體的棱長為,球的半徑為,根據(jù)題意,,解得,所以,所以外接球的表面積,故選:A【點睛】本題主要考查了球的組合體問題,還考查了運算求解的能力,屬于基礎(chǔ)題.7、C【解析】試題分析:設(shè)事件為“從1,2,3,…,9這9個數(shù)中5個數(shù)的中位數(shù)是5”,則基本事件總數(shù)為種,事件所包含的基本事件的總數(shù)為:,所以由古典概型的計算公式知,,故應(yīng)選.考點:1.古典概型;8、D【解析】
令,則,所以零點在區(qū)間.方程的解所在區(qū)間是,故選D.9、B【解析】
取BC中點為M,連接OM,EM找出異面直線夾角為,在三角形中利用邊角關(guān)系得到答案.【詳解】取BC中點為M,連接OM,EM在正方體中為底面的中心,為的中點易知:異面直線與所成角為設(shè)正方體邊長為2,在中:故答案選B【點睛】本題考查了立體幾何里異面直線的夾角,通過平行找到對應(yīng)的角是解題的關(guān)鍵.10、D【解析】
根據(jù)三點共線,有成立,解方程即可.【詳解】因為三點共線,所以有成立,因此,故本題選D.【點睛】本題考查了斜率公式的應(yīng)用,考查了三點共線的性質(zhì),考查了數(shù)學(xué)運算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)折疊后不變的垂直關(guān)系,結(jié)合線面垂直判定定理可得到為三棱錐的高,由此可根據(jù)三棱錐體積公式求得結(jié)果.【詳解】設(shè)點重合于點,如下圖所示:,,又平面,平面,即為三棱錐的高故答案為:【點睛】本題考查立體幾何折疊問題中的三棱錐體積的求解問題,處理折疊問題的關(guān)鍵是能夠明確折疊后的不變量,即不變的垂直關(guān)系和長度關(guān)系.12、【解析】
求圓心到直線的距離,用距離減去半徑即可最小值.【詳解】圓C的圓心為,半徑為,圓心C到直線的距離為:,所以最小值為:故答案為:【點睛】本題考查圓上的點到直線的距離的最值,若圓心距為d,圓的半徑為r且圓與直線相離,則圓上的點到直線距離的最大值為d+r,最小值為d-r.13、【解析】的部分圖象如圖所示,為等腰直角三角形,,,函數(shù)是偶函數(shù),,函數(shù)的解析式為,故答案為.【方法點睛】本題主要通過已知三角函數(shù)的圖象求解析式考查三角函數(shù)的性質(zhì),屬于中檔題.利用最值求出,利用圖象先求出周期,用周期公式求出,利用特殊點求出,正確求使解題的關(guān)鍵.求解析時求參數(shù)是確定函數(shù)解析式的關(guān)鍵,往往利用特殊點求的值,由特殊點求時,一定要分清特殊點是“五點法”的第幾個點.14、【解析】試題分析:因為,所以,當(dāng)且僅當(dāng)即,由題意,解得考點:基本不等式15、1【解析】由,得.即.解得.16、【解析】
由題意利用韋達(dá)定理求得、的值,再利用兩角差的正切公式,求得要求式子的值.【詳解】解:、是方程的兩根,,,,或,,則,故答案為:.【點睛】本題主要考查韋達(dá)定理,兩角差的正切公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)詳見解析.【解析】
(1)余弦定理的證明其實在課本就直接給出過它向量方法的證明,通過,等向量模長相等就可,當(dāng)然我們還可以通過坐標(biāo)的運算完成(如方法二)(2)通過點P,將三角形分割,這種題中多注意幾個相等(公共邊相等,)我們可以得到相對應(yīng)的等量關(guān)系,完成本題.【詳解】(1)證法一:如圖,即證法二:已知中所對邊分別為,以為原點,所在直線為軸建立直角坐標(biāo)系,則,所以(2)令,由余弦定理得:,因為所以所以所以【點睛】(1)向量既有大小又有方向.在幾何中是一種很重要的工具,比如三角形中,三邊有大小,角度問題我們可以轉(zhuǎn)化為向量夾角相關(guān),所以很容易想到向量方法.(2)解組合三角形問題,多注重圖形中一些恒等關(guān)系比如邊長、角度問題.18、(1);(2)【解析】
(1)法一:在中,利用余弦定理即可得到的長度;法二:在中,由正弦定理可求得,再利用正弦定理即可得到的長度;(2)在中,使用正弦定理可知是等邊三角形或直角三角形,分兩種情況分別找出面積表達(dá)式計算最大值即可.【詳解】(1)法一:中,由余弦定理得,即,解得或舍去,所以.法二:中,由正弦定理得,即.解得,故,.由正弦定理得,即,解得.(2)中,由正弦定理及,可得,即或,即或.是等邊三角形或直角三角形.中,設(shè),由正弦定理得.若是等邊三角形,則.∵當(dāng)時,面積的最大值為;若是直角三角形,則.當(dāng)時,面積的最大值為;綜上所述,面積的最大值為.【點睛】本題主要考查正弦定理,余弦定理,面積公式,三角函數(shù)最值的相關(guān)應(yīng)用,綜合性強(qiáng),意在考查學(xué)生的計算能力,轉(zhuǎn)化能力,分析三角形的形狀并討論是解決本題的關(guān)鍵.19、(1);;(2).【解析】
(1)根據(jù)向量線性運算法則可直接求得結(jié)果;(2)根據(jù)(1)的結(jié)論將已知等式化為;根據(jù)等邊三角形邊長和夾角可將等式變?yōu)殛P(guān)于的方程,解方程求得結(jié)果.【詳解】(1)(2)為等邊三角形且,即:,解得:【點睛】本題考查平面向量線性運算、數(shù)量積運算的相關(guān)知識;關(guān)鍵是能夠?qū)⒌仁睫D(zhuǎn)化為已知模長和夾角的向量的數(shù)量積運算的形式,根據(jù)向量數(shù)量積的定義求得結(jié)果.20、(1);(2)【解析】
(1)把的坐標(biāo)代入方程得到,結(jié)合解出后可得標(biāo)準(zhǔn)方程.求出直線的方程,聯(lián)立橢圓方程和直線方程后可求的坐標(biāo),故可得的值.(2)因,故可用表示的坐標(biāo),利用它在橢圓上可得與的關(guān)系,化簡后可得與離心率的關(guān)系,由的范圍可得的范圍.【詳解】(1)因為垂直于軸,且點的坐標(biāo)為,所以,,解得,,所以橢圓的方程為.所以,直線的方程為,將代入橢圓的方程,解得,所以.(2)因為軸,不妨設(shè)在軸上方,,.設(shè),因為在橢圓上,所以,解得,即.(方法一)因為,由得,,,解得,,所以.因為點在橢圓上,所以,即,所以,從而.因為,所以.解得,所以橢圓的離心率的取值范圍.【點睛】求橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵是基本量的確定,方法有待定系數(shù)法、定義法等.圓錐曲線中的離心率的計算或范圍問題,關(guān)鍵是利用題設(shè)條件構(gòu)建關(guān)于的一個等式關(guān)系或不等式關(guān)系,其中不等式關(guān)系的構(gòu)建需要利用題設(shè)中的范圍、坐標(biāo)的范圍、幾何量的范圍或點的位置等.21、(Ⅰ)見解析(Ⅱ)【解析】試題分析:(1)根據(jù)面面平行的性質(zhì)得到,,根據(jù)平行關(guān)系和長度關(guān)系得到點是的中點,點是的中點;(2),因為,所以,進(jìn)而求得體積.詳解:(1)因為平面平面,平面平面,平面平面,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融租賃居間合同模板
- 始興縣中醫(yī)院特殊用房設(shè)施設(shè)備采購及安裝及醫(yī)療設(shè)備采購項目招標(biāo)文件
- 終止合同退款協(xié)議
- 未維修事故車買賣合同協(xié)議書
- 企業(yè)人才培養(yǎng)與發(fā)展作業(yè)指導(dǎo)書
- 質(zhì)押礦產(chǎn)權(quán)收益權(quán)擔(dān)保協(xié)議書
- 養(yǎng)雞業(yè)養(yǎng)殖技術(shù)手冊
- 庫房轉(zhuǎn)租合同
- 智能倉儲標(biāo)準(zhǔn)化管理與供應(yīng)鏈優(yōu)化項目實踐
- 焊接結(jié)構(gòu)分析與優(yōu)化作業(yè)指導(dǎo)書
- 社區(qū)獲得性肺炎的護(hù)理查房
- 2023年衛(wèi)生院崗位大練兵大比武競賽活動實施方案
- 2023年浙江省初中學(xué)生化學(xué)競賽初賽試卷
- 體育賽事策劃與管理第八章體育賽事的利益相關(guān)者管理課件
- 遼海版小學(xué)五年級美術(shù)下冊全套課件
- 專題7閱讀理解之文化藝術(shù)類-備戰(zhàn)205高考英語6年真題分項版精解精析原卷
- 《生物資源評估》剩余產(chǎn)量模型
- 2022年廣東省10月自考藝術(shù)概論00504試題及答案
- 隧道二襯承包合同參考
- 物理專業(yè)常用英語詞匯
- 空氣能熱泵系統(tǒng)
評論
0/150
提交評論