版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
貴州省畢節(jié)市織金一中2024年高一下數(shù)學(xué)期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.執(zhí)行如圖的程序框圖,則輸出的λ是()A.-2 B.-4 C.0 D.-2或02.某三棱錐的三視圖如圖所示,該三棱錐的外接球表面積為()A. B. C. D.3.已知直線:是圓的對稱軸.過點作圓的一條切線,切點為,則()A.2 B. C.6 D.4.已知兩條平行直線和之間的距離等于,則實數(shù)的值為()A. B. C.或 D.5.若,則三個數(shù)的大小關(guān)系是()A. B.C. D.6.在平行四邊形中,,若點滿足且,則A.10 B.25 C.12 D.157.已知圓(為圓心,且在第一象限)經(jīng)過,,且為直角三角形,則圓的方程為()A. B.C. D.8.已知a,b為非零實數(shù),且,則下列不等式一定成立的是()A. B. C. D.9.在區(qū)間隨機(jī)取一個實數(shù),則的概率為()A. B. C. D.10.己知向量,,,則“”是“”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),,,則,,從小到大排列為______12.已知,,兩圓和只有一條公切線,則的最小值為________13.函數(shù)的單調(diào)遞增區(qū)間為______.14.定義在上的函數(shù),對任意的正整數(shù),都有,且,若對任意的正整數(shù),有,則___________.15.設(shè)奇函數(shù)的定義域為R,且對任意實數(shù)滿足,若當(dāng)∈[0,1]時,,則____.16.已知,,,則的最小值為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,函數(shù)(其中),且圖象在軸右側(cè)的第一個最高點的橫坐標(biāo)為,并過點.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)增區(qū)間.18.如圖,在長方體中,,點為的中點.(1)求證:直線平面;(2)求證:平面平面;(3)求直線與平面的夾角.19.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對的邊分別為,,,若,且為鈍角,,求面積的最大值.20.已知向量,不是共線向量,,,(1)判斷,是否共線;(2)若,求的值21.為了了解當(dāng)下高二男生的身高狀況,某地區(qū)對高二年級男生的身高(單位:)進(jìn)行了抽樣調(diào)查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.(1)若身高在以內(nèi)的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?(2)從所抽取的樣本中身高在和的男生中隨機(jī)再選出2人調(diào)查其平時體育鍛煉習(xí)慣對身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)框圖有,由判斷條件即即可求出的值.【詳解】由有.根據(jù)輸出的條件是,即.所以,解得:.故選:A【點睛】本題考查程序框圖和向量的加法以及數(shù)量積以及性質(zhì),屬于中檔題.2、D【解析】
根據(jù)三視圖還原幾何體,由三棱錐的幾何特征即可求出其外接球表面積.【詳解】根據(jù)三視圖可知,該幾何體如圖所示:所以該幾何體的外接球,即是長方體的外接球.因為,所以外接球直徑.故該三棱錐的外接球表面積為.故選:D.【點睛】本題主要考查由三視圖還原幾何體,并計算其外接球的表面積,意在考查學(xué)生的直觀想象能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題.3、C【解析】試題分析:直線l過圓心,所以,所以切線長,選C.考點:切線長4、C【解析】
利用兩條平行線之間的距離公式可求的值.【詳解】兩條平行線之間的距離為,故或,故選C.【點睛】一般地,平行線和之間的距離為,應(yīng)用該公式時注意前面的系數(shù)要相等.5、A【解析】
根據(jù)對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)比較,b,c的大小即可.【詳解】=log50.2<0,b=20.5>1,0<c=0.52<1,則,故選A.【點睛】本題考查了對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.6、C【解析】
先由題意,用,表示出,再由題中條件,根據(jù)向量數(shù)量積的運算,即可求出結(jié)果.【詳解】因為點滿足,所以,則故選C.【點睛】本題主要考查向量數(shù)量積的運算,熟記平面向量基本定理以及數(shù)量積的運算法則即可,屬于??碱}型.7、D【解析】
設(shè)且,半徑為,根據(jù)題意列出方程組,求得的值,即可求解.【詳解】依題意,圓經(jīng)過點,可設(shè)且,半徑為,則,解得,所以圓的方程為.【點睛】本題主要考查了圓的標(biāo)準(zhǔn)方程的求解,其中解答中熟記圓的標(biāo)準(zhǔn)方程的形式,以及合理應(yīng)用圓的性質(zhì)是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.8、C【解析】
,時,、、不成立;利用作差比較,即可求出.【詳解】解:,時,,,故、、不成立;,,.故選:.【點睛】本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.9、C【解析】
利用幾何概型的定義區(qū)間長度之比可得答案,在區(qū)間的占比為,所以概率為。【詳解】因為的長度為3,在區(qū)間的長度為9,所以概率為。故選:C【點睛】此題考查幾何概型,概率即是在部分占總體的占比,屬于簡單題目。10、A【解析】
先由題意,得到,再由充分條件與必要條件的概念,即可得出結(jié)果.【詳解】因為,,所以,若,則,所以;若,則,所以;綜上,“”是“”的充要條件.故選:A【點睛】本題主要考查向量共線的坐標(biāo)表示,以及命題的充要條件的判定,熟記充分條件與必要條件的概念,以及向量共線的坐標(biāo)表示即可,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
首先利用輔助角公式,半角公式,誘導(dǎo)公式分別求出,,的值,然后結(jié)合正弦函數(shù)的單調(diào)性對,,排序即可.【詳解】由題知,,,因為正弦函數(shù)在上單調(diào)遞增,所以.故答案為:.【點睛】本題考查了輔助角公式,半角公式,誘導(dǎo)公式,正弦函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.12、9【解析】
兩圓只有一條公切線,可以判斷兩圓是內(nèi)切關(guān)系,可以得到一個等式,結(jié)合這個等式,可以求出的最小值.【詳解】,圓心為,半徑為2;,圓心為,半徑為1.因為兩圓只有一條公切線,所以兩圓是內(nèi)切關(guān)系,即,于是有(當(dāng)且僅當(dāng)取等號),因此的最小值為9.【點睛】本題考查了圓與圓的位置關(guān)系,考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)運算能力.13、【解析】
令,解得的范圍即為所求的單調(diào)區(qū)間.【詳解】令,,解得:,的單調(diào)遞增區(qū)間為故答案為:【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解問題,關(guān)鍵是能夠采用整體對應(yīng)的方式,結(jié)合正弦函數(shù)的單調(diào)區(qū)間來進(jìn)行求解.14、【解析】
根據(jù)條件求出的表達(dá)式,利用等比數(shù)列的定義即可證明為等比數(shù)列,即可求出通項公式.【詳解】令,得,則,,令,得,則,,令,得,即,則,即所以,數(shù)列是等比數(shù)列,公比,首項.所以,故答案為:【點睛】本題主要考查等比數(shù)列的判斷和證明,綜合性較強(qiáng),考查學(xué)生的計算能力,屬于難題.15、【解析】
根據(jù)得到周期,再利用周期以及奇函數(shù)將自變量轉(zhuǎn)變到給定區(qū)間計算函數(shù)值.【詳解】因為,所以,所以,又因為,所以,則,故,又因為是奇函數(shù),所以,則.【點睛】(1)形如的函數(shù)是周期函數(shù),周期;(2)若要根據(jù)奇偶性求解分段函數(shù)的表達(dá)式,記住一個原則:“用未知表示已知”,也就是將自變量變形,利用已知范圍和解析式求解.16、8【解析】由題意可得:則的最小值為.當(dāng)且僅當(dāng)時等號成立.點睛:在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)向量的數(shù)量積得,結(jié)合,即可求解;(2)令即可求得增區(qū)間.【詳解】(1)由題圖象在軸右側(cè)的第一個最高點的橫坐標(biāo)為,并過點所以,解得,,解得:,所以;(2)令函數(shù)的單調(diào)增區(qū)間為.【點睛】此題考查根據(jù)平面向量的數(shù)量積,求函數(shù)解析式,根據(jù)三角函數(shù)的頂點坐標(biāo)和曲線上的點的坐標(biāo)求參數(shù),利用整體代入法求單調(diào)區(qū)間.18、(1)見證明;(2)見證明;(3)【解析】
(1)連接,交于,則為中點,連接OP,可證明,從而可證明直線平面;(2)先證明AC⊥BD,,可得到平面,然后結(jié)合平面,可知平面平面;(3)連接,由(2)知,平面平面,可知即為與平面的夾角,求解即可.【詳解】(1)證明:連接,交于,則為中點,連接OP,∵P為的中點,∴,∵OP?平面,?平面,∴平面;(2)證明:長方體中,,底面是正方形,則AC⊥BD,又⊥面,則.∵?平面,?平面,,∴平面.∵平面,∴平面平面;(3)解:連接,由(2)知,平面平面,∴即為與平面的夾角,在長方體中,∵,∴.在中,.∴直線與平面的夾角為.【點睛】本題考查了線面平行、面面垂直的證明,考查了線面角的求法,考查了學(xué)生的空間想象能力和計算求解能力,屬于中檔題.19、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解析】
(1)利用二倍角和輔助角公式可化簡函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范圍可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面積公式求得結(jié)果.【詳解】(1)最小正周期:令得:的單調(diào)遞減區(qū)間為:單調(diào)遞減區(qū)間.(2)由得:,解得:由余弦定理得:(當(dāng)且僅當(dāng)時取等號)即面積的最大值為:【點睛】本題考查正弦型函數(shù)最小正周期和單調(diào)區(qū)間的求解、解三角形中三角形面積最值的求解問題;涉及到二倍角公式和輔助角公式的應(yīng)用、余弦定理和三角形面積公式的應(yīng)用等知識;求解正弦型函數(shù)單調(diào)區(qū)間的常用解法為整體代入的方式,通過與正弦函數(shù)圖象的對應(yīng)關(guān)系來進(jìn)行求解.20、(1)與不共線.(2)【解析】
(1)假設(shè)與共線,由此列方程組,解方程組判斷出與不共線.(2)根據(jù)兩個向量平行列方程組,解方程組求得的值.【詳解】解:(1)若與共線,由題知為非零向量,則有,即,∴得到且,∴不存在,即與不平行.(2)∵,則,即,即,解得.【點睛】本小題主要考查判斷兩個向量是否共線,考查根據(jù)兩個向量平行求參數(shù),屬于基礎(chǔ)題.21、(1)12600;(2).【解析】
(1)由頻率分布直方圖知,身高正常的頻率,于是可得答案;(2)先計算出樣本容量,再找出樣本中身高在中的人數(shù),從而利用古典概型公式得到答案.【詳解】(1)由頻率分布直方圖知,身高正常的頻率為0.7,所以估計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個體化醫(yī)學(xué)診療行業(yè)營銷策略方案
- 化妝用皮膚調(diào)理霜產(chǎn)品供應(yīng)鏈分析
- 光通信設(shè)備產(chǎn)品供應(yīng)鏈分析
- 嬰兒尿褲產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 蔬菜盤商業(yè)機(jī)會挖掘與戰(zhàn)略布局策略研究報告
- 玻璃罐細(xì)分市場深度研究報告
- 市政供水處理行業(yè)相關(guān)項目經(jīng)營管理報告
- 醫(yī)用柔性內(nèi)窺鏡產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 辦公室家具出租行業(yè)經(jīng)營分析報告
- 發(fā)動機(jī)用火花塞產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 四川省高職單招汽車類《汽車機(jī)械基礎(chǔ)》復(fù)習(xí)備考試題庫(含答案)
- 四川省住宅設(shè)計標(biāo)準(zhǔn)
- 2024-2030年全球口腔清潔護(hù)理用品市場經(jīng)營狀況與投資價值可行性研究報告
- 物業(yè)管理服務(wù)勞務(wù)派遣 投標(biāo)方案(技術(shù)方案)
- 手術(shù)室患者的轉(zhuǎn)運與交接流程制度
- DL∕T 1475-2015 電力安全工器具配置與存放技術(shù)要求
- 投訴法官枉法裁判范本
- 工業(yè)設(shè)計史論??荚囶}
- 青春期性健康
- 幼兒園安全教育課件:《過馬路》
- 過橋墊資合同模板
評論
0/150
提交評論