版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
黑龍江省牡丹江市三中2024年高一數(shù)學(xué)第二學(xué)期期末監(jiān)測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)的部分圖象如圖所示,則的值為()A. B. C. D.2.若,且,則()A. B. C. D.3.平面向量與的夾角為,,,則A. B.12 C.4 D.4.已知各個(gè)頂點(diǎn)都在同一球面上的正方體的棱長為2,則這個(gè)球的表面積為()A. B. C. D.5.設(shè)和分別表示函數(shù)的最大值和最小值,則等于()A. B. C. D.6.已知等比數(shù)列的前n項(xiàng)和為,若,,則()A. B. C.1 D.27.設(shè)向量,,則是的A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件8.已知函數(shù),則不等式的解集是()A. B. C. D.9.在區(qū)間內(nèi)隨機(jī)取一個(gè)實(shí)數(shù)a,使得關(guān)于x的方程有實(shí)數(shù)根的概率為()A. B. C. D.10.記為實(shí)數(shù)中的最大數(shù).若實(shí)數(shù)滿足則的最大值為()A. B.1 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.的值域是______.12.已知,各項(xiàng)均為正數(shù)的數(shù)列滿足,,若,則的值是.13.已知某中學(xué)高三學(xué)生共有800人參加了數(shù)學(xué)與英語水平測(cè)試,現(xiàn)學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人的成績進(jìn)行統(tǒng)計(jì),先將800人按001,002,…,800進(jìn)行編號(hào).如果從第8行第7列的數(shù)開始從左向右讀,(下面是隨機(jī)數(shù)表的第7行至第9行)844217533157245506887704744767217633502683925316591692753562982150717512867363015807443913263321134278641607825207443815則最先抽取的2個(gè)人的編號(hào)依次為_____.14.等比數(shù)列中前n項(xiàng)和為,且,,,則項(xiàng)數(shù)n為____________.15.如果是奇函數(shù),則=.16.方程在上的解集為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)從2,3,8,9中任取兩個(gè)不同的數(shù)字,分別記為,求為整數(shù)的概率?(2)兩人相約在7點(diǎn)到8點(diǎn)在某地會(huì)面,先到者等候另一個(gè)人20分鐘方可離去.試求這兩人能會(huì)面的概率?18.是亞太區(qū)域國家與地區(qū)加強(qiáng)多邊經(jīng)濟(jì)聯(lián)系、交流與合作的重要組織,其宗旨和目標(biāo)是“相互依存、共同利益,堅(jiān)持開放性多邊貿(mào)易體制和減少區(qū)域間貿(mào)易壁壘.”2017年會(huì)議于11月10日至11日在越南峴港舉行.某研究機(jī)構(gòu)為了了解各年齡層對(duì)會(huì)議的關(guān)注程度,隨機(jī)選取了100名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,,,).(1)求選取的市民年齡在內(nèi)的人數(shù);(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人參與會(huì)議的宣傳活動(dòng),求參與宣傳活動(dòng)的市民中至少有一人的年齡在內(nèi)的概率.19.已知首項(xiàng)為的等比數(shù)列不是遞減數(shù)列,其前n項(xiàng)和為,且成等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的最大項(xiàng)的值與最小項(xiàng)的值.20.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).求證:(1)AC⊥BC1;(2)AC1∥平面CDB1.21.在中,內(nèi)角A,B,C的對(duì)邊分別是ɑ,b,c,已知,.(1)求角C;(2)求面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
結(jié)合函數(shù)圖像,由函數(shù)的最值求出A,由周期求出,再由求出的值.【詳解】由圖像可知:,故,又,所以又,故:.故選:C【點(diǎn)睛】本題考查了利用圖像求三角函數(shù)的解析式,考查了學(xué)生綜合分析,數(shù)形結(jié)合的能力,屬于中檔題.2、A【解析】
利用二倍角的正弦公式和與余弦公式化簡可得.【詳解】∵,∴,∵,所以,∴,∴.故選:A【點(diǎn)睛】本題考查了二倍角的正弦公式,考查了二倍角的余弦公式,屬于基礎(chǔ)題.3、D【解析】
根據(jù),利用向量數(shù)量積的定義和運(yùn)算律即可求得結(jié)果.【詳解】由題意得:,本題正確選項(xiàng):【點(diǎn)睛】本題考查向量模長的求解,關(guān)鍵是能夠通過平方運(yùn)算將問題轉(zhuǎn)化為平面向量數(shù)量積的求解問題,屬于??碱}型.4、A【解析】
先求出外接球的半徑,再求球的表面積得解.【詳解】由題得正方體的對(duì)角線長為,所以.故選A【點(diǎn)睛】本題主要考查多面體的外接球問題和球的表面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.5、C【解析】
根據(jù)余弦函數(shù)的值域,確定出的最大值和最小值,即可計(jì)算出的值.【詳解】因?yàn)榈闹涤驗(yàn)椋缘淖畲笾?,所以的最小值,所?故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)的最值問題,難度較易.求解形如的函數(shù)的值域,注意借助余弦函數(shù)的有界性進(jìn)行分析.6、C【解析】
利用等比數(shù)列的前項(xiàng)和公式列出方程組,能求出首項(xiàng).【詳解】等比數(shù)列的前項(xiàng)和為,,,,解得,.故選:.【點(diǎn)睛】本題考查等比數(shù)列的首項(xiàng)的求法,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7、C【解析】
利用向量共線的性質(zhì)求得,由充分條件與必要條件的定義可得結(jié)論.【詳解】因?yàn)橄蛄浚?,所以,即可以得到,不能推出,是“”的必要不充分條件,故選C.【點(diǎn)睛】本題主要考查向量共線的性質(zhì)、充分條件與必要條件的定義,屬于中檔題.利用向量的位置關(guān)系求參數(shù)是出題的熱點(diǎn),主要命題方式有兩個(gè):(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.8、A【解析】
分別考慮即時(shí);即時(shí),原不等式的解集,最后求出并集。【詳解】當(dāng)即時(shí),,則等價(jià)于,即,解得:,當(dāng)即時(shí),,則等價(jià)于,即,所以,綜述所述,原不等式的解集為故答案選A【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,一元二次不等式的解集,屬于基礎(chǔ)題。9、C【解析】
由關(guān)于x的方程有實(shí)數(shù)根,求得,再結(jié)合長度比的幾何概型,即可求解,得到答案.【詳解】由題意,關(guān)于x的方程有實(shí)數(shù)根,則滿足,解得,所以在區(qū)間內(nèi)隨機(jī)取一個(gè)實(shí)數(shù)a,使得關(guān)于x的方程有實(shí)數(shù)根的概率為.故選:C.【點(diǎn)睛】本題主要考查了幾何概型的概率的計(jì)算問題,解決此類問題的步驟:求出滿足條件A的基本事件對(duì)應(yīng)的“幾何度量”,再求出總的基本事件對(duì)應(yīng)的“幾何度量”,然后根據(jù)求解,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.10、B【解析】
先利用判別式法求出|x|,|y|,|z|的取值范圍,再判斷得解.【詳解】因?yàn)?,所以,整理得:,解得,所以,同理?故選B【點(diǎn)睛】本題主要考查新定義和判別式法求范圍,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
對(duì)進(jìn)行整理,得到正弦型函數(shù),然后得到其值域,得到答案.【詳解】,因?yàn)樗缘闹涤驗(yàn)?故答案為:【點(diǎn)睛】本題考查輔助角公式,正弦型函數(shù)的值域,屬于簡單題.12、【解析】
由題意得,依次求得,,,,,∵,且>0,∴,依次求得======,∴+=+=.考點(diǎn):數(shù)列的遞推公式.13、165;535【解析】
按照題設(shè)要求讀取隨機(jī)數(shù)表得到結(jié)果,注意不符合要求的數(shù)據(jù)要舍去.【詳解】讀取的第一個(gè)數(shù):滿足;讀取的第二個(gè)數(shù):不滿足;讀取的第三個(gè)數(shù):不滿足;讀取的第三個(gè)數(shù):滿足.【點(diǎn)睛】隨機(jī)數(shù)表的讀取規(guī)則:從指定位置開始,按照指定位數(shù)讀取,一次讀取一組,若讀取的數(shù)不符合規(guī)定(不在范圍之內(nèi)),則舍去,重新讀取.14、6【解析】
利用等比數(shù)列求和公式求得,再利用通項(xiàng)公式求解n即可【詳解】,代入,,得,又,得.故答案為:6【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式及求和公式的基本量計(jì)算,熟記公式準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題15、-2【解析】試題分析:∵,∴,∴,∴=-2考點(diǎn):本題考查了三角函數(shù)的性質(zhì)點(diǎn)評(píng):對(duì)于定義域?yàn)镽的奇函數(shù)恒有f(0)=0.利用此結(jié)論可解決此類問題16、【解析】
由求出的取值范圍,由可得出的值,從而可得出方程在上的解集.【詳解】,,由,得.,解得,因此,方程在上的解集為.故答案為:.【點(diǎn)睛】本題考查正切方程的求解,解題時(shí)要求出角的取值范圍,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)分別求出基本事件總數(shù)及為整數(shù)的事件數(shù),再由古典概型概率公式求解;(2)建立坐標(biāo)系,找出會(huì)面的區(qū)域,用會(huì)面的區(qū)域面積比總區(qū)域面積得答案.【詳解】(1)所有的基本事件共有4×3=12個(gè),記事件A={為整數(shù)},因?yàn)?,則事件A包含的基本事件共有2個(gè),∴p(A)=;(2)以x、y分別表示兩人到達(dá)時(shí)刻,則.兩人能會(huì)面的充要條件是.建立直角坐標(biāo)系如下圖:∴P=.∴這兩人能會(huì)面的概率為.【點(diǎn)睛】本題考查古典概型與幾何概型概率的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是基礎(chǔ)題.18、(1)30人;(2).【解析】
(1)由頻率分布直方圖,先求出年齡在內(nèi)的頻率,進(jìn)而可求出人數(shù);(2)先由分層抽樣,確定應(yīng)從第3,4組中分別抽取3人,2人,記第3組的3名志愿者分別為,第4組的2名志愿者分別為,再用列舉法,分別列舉出總的基本事件,以及滿足條件的基本事件,基本事件個(gè)數(shù)比即為所求概率.【詳解】(1)由題意可知,年齡在內(nèi)的頻率為,故年齡在內(nèi)的市民人數(shù)為.(2)易知,第4組的人數(shù)為,故第3,4組共有50名市民,所以用分層抽樣的方法在50名志愿者中抽取5名志愿者,每組抽取的人數(shù)分別為:第3組;第4組.所以應(yīng)從第3,4組中分別抽取3人,2人.記第3組的3名志愿者分別為,第4組的2名志愿者分別為,則從5名志愿者中選取2名志愿者的所有情況為,,,,,,,,,,共有10種.其中第4組的2名志愿者至少有一名志愿者被選中的有:,,,,,,,共有7種,所以至少有一人的年齡在內(nèi)的概率為.【點(diǎn)睛】本題主要考查由頻率分布直方圖求頻數(shù),以及古典概型的概率問題,會(huì)分析頻率分布直方圖,熟記古典概型的概率計(jì)算公式即可,屬于常考題型.19、(1);(2)最大項(xiàng)的值為,最小項(xiàng)的值為【解析】試題分析:(1)根據(jù)成等差數(shù)列,利用等比數(shù)列通項(xiàng)公式和前項(xiàng)和公式,展開.利用等比數(shù)列不是遞減數(shù)列,可得值,進(jìn)而求通項(xiàng).(2)首先根據(jù)(1)得到,進(jìn)而得到,但是等比數(shù)列的公比是負(fù)數(shù),所以分兩種情況:當(dāng)?shù)漠?dāng)n為奇數(shù)時(shí),隨n的增大而減小,所以;當(dāng)n為偶數(shù)時(shí),隨n的增大而增大,所以,然后可判斷最值.試題解析:(1)設(shè)的公比為q.由成等差數(shù)列,得.即,則.又不是遞減數(shù)列且,所以.故.(2)由(1)利用等比數(shù)列的前項(xiàng)和公式,可得得當(dāng)n為奇數(shù)時(shí),隨n的增大而減小,所以,故.當(dāng)n為偶數(shù)時(shí),隨n的增大而增大,所以,故.綜上,對(duì)于,總有,所以數(shù)列最大項(xiàng)的值為,最小值的值為.考點(diǎn):等差中項(xiàng),等比通項(xiàng)公式;數(shù)列增減性的討論求最值.20、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)由勾股定理可證得為直角三角形即可證得,由直棱柱可知面,可證得,根據(jù)線面垂直的判定定理可證得面,從而可得.(2)設(shè)與的交點(diǎn)為,連結(jié),由中位線可證得,根據(jù)線面平行的判定定理可證得平面.試題解析:證明:(1)證明:,,為直角三角形且,即.又∵三棱柱為直棱柱,面,面,,,面,面,.(2)設(shè)與的交點(diǎn)為,連結(jié),是的中點(diǎn),是的中點(diǎn),.面,面,平面.考點(diǎn):1線線垂直,線面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度grc構(gòu)件制作、安裝、維修、保養(yǎng)全面合同9篇
- 二零二五年度污水處理廠廠區(qū)環(huán)境噪聲污染防治合同3篇
- 隴東學(xué)院《大學(xué)數(shù)學(xué)B(下)》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州亞歐交通職業(yè)學(xué)院《隨機(jī)過程理論》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度征收集體土地房屋拆遷補(bǔ)償及安置實(shí)施合同6篇
- 2024版物業(yè)管理法規(guī)制度與政策
- 二零二五年度個(gè)人藝術(shù)品投資借款擔(dān)保服務(wù)協(xié)議3篇
- 高考語文復(fù)習(xí):文言文斷句新題型+專項(xiàng)練習(xí)
- 機(jī)械制造技術(shù)基礎(chǔ)習(xí)題及答案3
- 二零二五年度特色小吃飯店送餐合同協(xié)議書3篇
- 2024年新技術(shù)、新產(chǎn)品、新工藝、新材料的應(yīng)用培訓(xùn)課件
- JGJT46-2024《施工現(xiàn)場臨時(shí)用電安全技術(shù)標(biāo)準(zhǔn)》條文解讀
- 申論公務(wù)員考試試題與參考答案
- “三排查三清零”回頭看問題整改臺(tái)賬
- 造價(jià)咨詢結(jié)算審核服務(wù)方案
- 中國人民財(cái)產(chǎn)保險(xiǎn)股份有限公司機(jī)動(dòng)車綜合商業(yè)保險(xiǎn)條款
- 八年級(jí)物理上冊(cè)計(jì)算題精選(50道)
- 礦井反風(fēng)演習(xí)方案
- 2022年脛骨平臺(tái)三柱理論
- 工程進(jìn)度款支付申請(qǐng)表
- 基因編輯技術(shù)PPT課件
評(píng)論
0/150
提交評(píng)論