版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省福州市三校聯(lián)考2024年高三最后一模數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標(biāo)準(zhǔn)方程為()A. B. C. D.2.在中,為邊上的中點,且,則()A. B. C. D.3.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.4.的展開式中的系數(shù)是()A.160 B.240 C.280 D.3205.已知向量,,則向量與的夾角為()A. B. C. D.6.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.7.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.8.函數(shù)的圖象大致是()A. B.C. D.9.函數(shù)的最小正周期是,則其圖象向左平移個單位長度后得到的函數(shù)的一條對稱軸是()A. B. C. D.10.已知函數(shù)(,且)在區(qū)間上的值域為,則()A. B. C.或 D.或411.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.12.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.14.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則15.已知是同一球面上的四個點,其中平面,是正三角形,,則該球的表面積為______.16.函數(shù)的值域為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)已知是的一個極值點,求曲線在處的切線方程(Ⅱ)討論關(guān)于的方程根的個數(shù).18.(12分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.19.(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.20.(12分)已知△ABC的兩個頂點A,B的坐標(biāo)分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.(1)求曲線G的方程;(2)設(shè)直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標(biāo)原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.21.(12分)的內(nèi)角,,的對邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.22.(10分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程(不要求具體過程);(II)設(shè)P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,,所以拋物線的標(biāo)準(zhǔn)方程為:y2=2x.故選B.【點睛】本題考查了拋物線的簡單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題.2、A【解析】
由為邊上的中點,表示出,然后用向量模的計算公式求模.【詳解】解:為邊上的中點,,故選:A【點睛】在三角形中,考查中點向量公式和向量模的求法,是基礎(chǔ)題.3、D【解析】
根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.4、C【解析】
首先把看作為一個整體,進(jìn)而利用二項展開式求得的系數(shù),再求的展開式中的系數(shù),二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【點睛】本題考查二項展開式指定項的系數(shù),掌握二項展開式的通項是解題的關(guān)鍵,屬于基礎(chǔ)題.5、C【解析】
求出,進(jìn)而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標(biāo)運算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時,通常代入公式進(jìn)行計算.6、A【解析】
由題先畫出基本圖形,結(jié)合向量加法和點乘運算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題7、A【解析】
根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運算能力,屬于基礎(chǔ)題.8、A【解析】
根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當(dāng)時,,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當(dāng)時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對復(fù)合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復(fù)合函數(shù)單調(diào)性同增異減,屬中檔題.9、D【解析】
由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過平移后得到函數(shù)解析式為,由,得,當(dāng)時,.故選D.【點睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.10、C【解析】
對a進(jìn)行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時,,所以,,所以;當(dāng)時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運算和數(shù)學(xué)抽象的核心素養(yǎng).11、C【解析】
根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無最大值.若,則當(dāng)時,,在上單調(diào)遞減,當(dāng)時,,在上單調(diào)遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當(dāng)時,,在遞減;當(dāng)時,,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.12、C【解析】
畫出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運算或數(shù)乘運算.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】
作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.14、3【解析】
先根據(jù)約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標(biāo)函數(shù)z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點A(12,z在點A處有最小值:z=2×1故答案為:32【點睛】本題主要考查線性規(guī)劃的基本應(yīng)用,利用數(shù)形結(jié)合,結(jié)合目標(biāo)函數(shù)的幾何意義是解決此類問題的基本方法.15、【解析】
求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點睛】本小題主要考查幾何體外接球表面積的計算,屬于基礎(chǔ)題.16、【解析】
利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域為所以函數(shù)的值域為故答案為:【點睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎(chǔ)題。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)見解析【解析】
(Ⅰ)求函數(shù)的導(dǎo)數(shù),利用x=2是f(x)的一個極值點,得f'(2)=0建立方程求出a的值,結(jié)合導(dǎo)數(shù)的幾何意義進(jìn)行求解即可;(Ⅱ)利用參數(shù)法分離法得到,構(gòu)造函數(shù)求出函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,利用數(shù)形結(jié)合轉(zhuǎn)化為圖象交點個數(shù)進(jìn)行求解即可.【詳解】(Ⅰ)因為,則,因為是的一個極值點,所以,即,所以,因為,,則直線方程為,即;(Ⅱ)因為,所以,所以,設(shè),則,所以在上是增函數(shù),在上是減函數(shù),故,所以,所以,設(shè),則,所以在上是減函數(shù),上是增函數(shù),所以,所以當(dāng)時,,函數(shù)在是減函數(shù),當(dāng)時,,函數(shù)在是增函數(shù),因為時,,,,所以當(dāng)時,方程無實數(shù)根,當(dāng)時,方程有兩個不相等實數(shù)根,當(dāng)或時,方程有1個實根.【點睛】本題考查函數(shù)中由極值點求參,導(dǎo)數(shù)的幾何意義,還考查了利用導(dǎo)數(shù)研究方程根的個數(shù)問題,屬于難題.18、(1),;(2)【解析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項公式先求得公差和公比,即得到結(jié)論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項和公式即可求得數(shù)列前n項和.試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設(shè)等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數(shù)列{1n}的前n項和為n(n+1),數(shù)列{2n﹣1}的前n項和為1×=2n﹣1,∴數(shù)列{bn}的前n項和為;考點:1.等差數(shù)列性質(zhì)的綜合應(yīng)用;2.等比數(shù)列性質(zhì)的綜合應(yīng)用;1.數(shù)列求和.19、t=1【解析】
把變形為結(jié)合基本不等式進(jìn)行求解.【詳解】因為即,當(dāng)且僅當(dāng),,時,上述等號成立,所以,即,又x,y,z>0,所以xyzt=1.【點睛】本題主要考查基本不等式的應(yīng)用,利用基本不等式求解最值時要注意轉(zhuǎn)化為適用形式,同時要關(guān)注不等號是否成立,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).20、(1).(2)四邊形OMDN的面積是定值,其定值為.【解析】
(1)根據(jù)三角形內(nèi)切圓的性質(zhì)證得,由此判斷出點的軌跡為橢圓,并由此求得曲線的方程.(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.【詳解】(1)因為圓E為△ABC的內(nèi)切圓,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以點C的軌跡為以點A和點B為焦點的橢圓(點不在軸上),所以c,a=2,b,所以曲線G的方程為,(2)因為,故四邊形為平行四邊形.當(dāng)直線l的斜率不存在時,則四邊形為為菱形,故直線MN的方程為x=﹣1或x=1,此時可求得四邊形OMDN的面積為.當(dāng)直線l的斜率存在時,設(shè)直線l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2,x1x2,△=8(4k2+2﹣m2)>0,∴y1+y2=k(x1+x2)+2m,|MN|點O到直線MN的距離d,由,得xD,yD,∵點D在曲線C上,所以將D點坐標(biāo)代入橢圓方程得1+2k2=2m2,由題意四邊形OMDN為平行四邊形,∴OMDN的面積為S,由1+2k2=2m2得S,故四邊形OMDN的面積是定值,其定值為.【點睛】本小題主要考查用定義法求軌跡方程,考查橢圓中四邊形面積的計算,考查橢圓中的定值問題,考查運算求解能力,屬于中檔題.21、(1)(2)【解析】
(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經(jīng)檢驗符合題意,三角形的周長.(實際上可解得,符合三邊關(guān)系).【點睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導(dǎo)公式,考查正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了學(xué)生的運算能力,考查了轉(zhuǎn)化思想,屬
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 起重機(jī)設(shè)計課程設(shè)計
- 2025年度港口航道疏浚灰渣處理合同3篇
- 路面施工課程設(shè)計
- 該不該學(xué)構(gòu)圖課程設(shè)計
- 二零二五年度房屋出售合同范本(含房屋交易售后服務(wù)承諾)3篇
- 2025年度校園文化節(jié)贊助商權(quán)益分配合同3篇
- 2025年廣告業(yè)務(wù)員個人工作計劃范文(2篇)
- 某加油站油品跑冒漏事故應(yīng)急預(yù)案模版(2篇)
- 二零二五年度文化產(chǎn)業(yè)發(fā)展知識產(chǎn)權(quán)戰(zhàn)略合作協(xié)議2篇
- 2025年集郵進(jìn)校園活動業(yè)務(wù)校長講話稿(2篇)
- 飛防合同模板
- 不付租金解除合同通知書
- NB-T20307-2014核電廠冷卻塔環(huán)境影響評價技術(shù)規(guī)范
- 交通事故處理委托書模板
- 2022-2023學(xué)年浙江省湖州市德清縣人教PEP版四年級上冊期末檢測英語試卷【含答案】
- 2024年九年級初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答 第19講 轉(zhuǎn)化靈活的圓中角
- 托福聽力課件
- 2023年德宏隴川縣人民法院招聘聘用制書記員考試真題及答案
- 全球50強(qiáng)藥企官網(wǎng)及LOGO匯總
- 全國自然教育中長期發(fā)展規(guī)劃
- 2024年中科院心理咨詢師官方備考試題庫-上(單選題匯總)
評論
0/150
提交評論