版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆廣東省高州市大井中學(xué)高一下數(shù)學(xué)期末達標(biāo)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,則()A. B. C. D.2.已知向量,,若,則實數(shù)a的值為A. B.2或 C.或1 D.3.右邊程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入分別為14,18,則輸出的()A.0 B.2 C.4 D.144.在下列各圖中,每個圖的兩個變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)5.在中,邊,,分別是角,,的對邊,且滿足,若,則的值為A. B. C. D.6.如圖,設(shè)A、B兩點在河的兩岸,一測量者在A的同側(cè),在所在河岸邊選定一點C,測出AC的距離為502m,∠ACB=45°,∠CAB=105A.100m B.50C.1002m7.設(shè)a,b,c均為不等于1的正實數(shù),則下列等式中恒成立的是A.B.C.D.8.如圖,函數(shù)的圖像是()A. B.C. D.9.設(shè)x,y滿足約束條件,則z=x-y的取值范圍是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]10.在區(qū)間上隨機選取一個實數(shù),則事件“”發(fā)生的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知的一個內(nèi)角為,并且三邊長構(gòu)成公差為4的等差數(shù)列,則的面積為_______________.12.如圖,將全體正整數(shù)排成一個三角形數(shù)陣,按照這樣的排列規(guī)律,第行從右至左的第3個數(shù)為___________.13.如圖,長方體的體積是120,E為的中點,則三棱錐E-BCD的體積是_____.14.已知,,兩圓和只有一條公切線,則的最小值為________15.已知函數(shù),若對任意都有()成立,則的最小值為__________.16.已知數(shù)列的通項公式為是數(shù)列的前n項和,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,平面平面,四邊形為矩形,,點為的中點.(1)若,求三棱錐的體積;(2)點為上任意一點,在線段上是否存在點,使得?若存在,確定點的位置,并加以證明;若不存在,請說明理由.18.在中,角的對邊分別為.若.(1)求;(2)求的面積的最大值.19.解答下列問題:(1)求平行于直線3x+4y-2=0,且與它的距離是1的直線方程;(2)求垂直于直線x+3y-5=0且與點P(-1,0)的距離是的直線方程.20.如圖所示,在平面四邊形ABCD中,AD=1,CD=2,AC=.(1)求cos∠CAD的值;(2)若cos∠BAD=-,sin∠CBA=,求BC的長.21.不等式(1)若不等式的解集為或,求的值(2)若不等式的解集為,求的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
首先根據(jù),求得,結(jié)合角的范圍,利用平方關(guān)系,求得,利用題的條件,求得,之后將角進行配湊,使得,利用正弦的和角公式求得結(jié)果.【詳解】因為,所以,因為,所以.因為,,所以,所以,故選D.【點睛】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,正弦函數(shù)的和角公式,在解題的過程中,注意時刻關(guān)注角的范圍.2、C【解析】
根據(jù)題意,由向量平行的坐標(biāo)表示公式可得,解可得a的值,即可得答案.【詳解】根據(jù)題意,向量,,若,則有,解可得或1;故選C.【點睛】本題考查向量平行的坐標(biāo)表示方法,熟記平行的坐標(biāo)表示公式得到關(guān)于a的方程是關(guān)鍵,是基礎(chǔ)題3、B【解析】由a=14,b=18,a<b,則b變?yōu)?8﹣14=4,由a>b,則a變?yōu)?4﹣4=10,由a>b,則a變?yōu)?0﹣4=6,由a>b,則a變?yōu)?﹣4=1,由a<b,則b變?yōu)?﹣1=1,由a=b=1,則輸出的a=1.故選B.4、D【解析】
仔細觀察圖象,尋找散點圖間的相互關(guān)系,主要觀察這些散點是否圍繞一條曲線附近排列著,由此能夠得到正確答案.【詳解】散點圖(1)中,所有的散點都在曲線上,所以(1)具有函數(shù)關(guān)系;
散點圖(2)中,所有的散點都分布在一條直線的附近,所以(2)具有相關(guān)關(guān)系;
散點圖(3)中,所有的散點都分布在一條曲線的附近,所以(3)具有相關(guān)關(guān)系,
散點圖(4)中,所有的散點雜亂無章,沒有分布在一條曲線的附近,所以(4)沒有相關(guān)關(guān)系.
故選D.【點睛】本題考查散點圖和相關(guān)關(guān)系,是基礎(chǔ)題.5、A【解析】
利用正弦定理把題設(shè)等式中的邊換成角的正弦,進而利用兩角和公式化簡整理可得的值,由可得的值【詳解】在中,由正弦定理可得化為:即在中,,故,可得,即故選【點睛】本題以三角形為載體,主要考查了正弦定理,向量的數(shù)量積的運用,考查了兩角和公式,考查了分析問題和解決問題的能力,屬于中檔題。6、A【解析】
計算出ΔABC三個角的值,然后利用正弦定理可計算出AB的值.【詳解】在ΔABC中,AC=502m,∠ACB=45°,由正弦定理得ABsin∠ACB=ACsin【點睛】本題考查正弦定理解三角形,要熟悉正弦定理解三角形對三角形已知元素類型的要求,考查運算求解能力,屬于基礎(chǔ)題.7、B【解析】
根據(jù)對數(shù)運算的規(guī)律一一進行運算可得答案.【詳解】解:由a,b,c≠1.考察對數(shù)2個公式:,,對選項A:,顯然與第二個公式不符,所以為假.對選項B:,顯然與第二個公式一致,所以為真.對選項C:,顯然與第一個公式不符,所以為假.對選項D:,同樣與第一個公式不符,所以為假.所以選B.【點睛】本題主要考查對數(shù)運算的性質(zhì),熟練掌握對數(shù)運算的各公式是解題的關(guān)鍵.8、B【解析】
根據(jù)的取值進行分類討論,去掉中絕對值符號,轉(zhuǎn)化為分段函數(shù),利用正弦函數(shù)的圖象即可得解.【詳解】當(dāng)時,;當(dāng)時,.因此,函數(shù)的圖象是B選項中的圖象.故選:B.【點睛】本題考查正切函數(shù)與正弦函數(shù)的圖象,去掉絕對值是關(guān)鍵,考查分類討論思想的應(yīng)用,屬于中等題.9、B【解析】作出約束條件表示的可行域,如圖中陰影部分所示.目標(biāo)函數(shù)即,易知直線在軸上的截距最大時,目標(biāo)函數(shù)取得最小值;在軸上的截距最小時,目標(biāo)函數(shù)取得最大值,即在點處取得最小值,為;在點處取得最大值,為.故的取值范圍是[–3,2].所以選B.【名師點睛】線性規(guī)劃的實質(zhì)是把代數(shù)問題幾何化,即運用數(shù)形結(jié)合的思想解題.需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標(biāo)函數(shù)的最大或最小值會在可行域的端點處或邊界上取得.10、B【解析】
根據(jù)求出的范圍,再由區(qū)間長度比即可得出結(jié)果.【詳解】區(qū)間的長度為;由,解得,即,區(qū)間長度為,事件“”發(fā)生的概率是.故選B.【點睛】本題主要考查與長度有關(guān)的幾何概型,熟記概率計算公式即可,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
試題分析:設(shè)三角形的三邊長為a-4,b=a,c=a+4,(a<b<c),根據(jù)題意可知三邊長構(gòu)成公差為4的等差數(shù)列,可知a+c=2b,C=120,,則由余弦定理,c=a+b-2abcosC,,三邊長為6,10,14,,b=a+c-2accosB,即(a+c)=a+c-2accosB,cosB=,sinB=可知S==.考點:本試題主要考查了等差數(shù)列與解三角形的面積的求解的綜合運用.點評:解決該試題的關(guān)鍵是利用余弦定理來求解,以及邊角關(guān)系的運用,正弦面積公式來求解.巧設(shè)變量a-4,a,a+4會簡化運算.12、【解析】
由題可以先算出第行的最后一個數(shù),再從右至左算出第3個數(shù)即可.【詳解】由圖得,第行有個數(shù),故前行一共有個數(shù),即第行最后一個數(shù)為,故第行從右至左的第3個數(shù)為.【點睛】本題主要考查等差數(shù)列求和問題,注意從右至左的第3個數(shù)為最后一個數(shù)減2.13、10.【解析】
由題意結(jié)合幾何體的特征和所給幾何體的性質(zhì)可得三棱錐的體積.【詳解】因為長方體的體積為120,所以,因為為的中點,所以,由長方體的性質(zhì)知底面,所以是三棱錐的底面上的高,所以三棱錐的體積.【點睛】本題蘊含“整體和局部”的對立統(tǒng)一規(guī)律.在幾何體面積或體積的計算問題中,往往需要注意理清整體和局部的關(guān)系,靈活利用“割”與“補”的方法解題.14、9【解析】
兩圓只有一條公切線,可以判斷兩圓是內(nèi)切關(guān)系,可以得到一個等式,結(jié)合這個等式,可以求出的最小值.【詳解】,圓心為,半徑為2;,圓心為,半徑為1.因為兩圓只有一條公切線,所以兩圓是內(nèi)切關(guān)系,即,于是有(當(dāng)且僅當(dāng)取等號),因此的最小值為9.【點睛】本題考查了圓與圓的位置關(guān)系,考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)運算能力.15、【解析】
根據(jù)和的取值特點,判斷出兩個值都是最值,然后根據(jù)圖象去確定最小值.【詳解】因為對任意成立,所以取最小值,取最大值;取最小值時,與必為同一周期內(nèi)的最小值和最大值的對應(yīng)的,則,且,故.【點睛】任何一個函數(shù),若有對任何定義域成立,此時必有:,.16、【解析】
對數(shù)列的通項公式進行整理,再求其前項和,利用對數(shù)運算規(guī)則,可得到,從而求出,得到答案.【詳解】所以所以.故答案為:.【點睛】本題考查對數(shù)運算公式,由數(shù)列的通項求前項和,數(shù)列的極限,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,為中點,證明見解析.【解析】
(1)先根據(jù)面積垂直的性質(zhì)得到平面;再由題中數(shù)據(jù),結(jié)合棱錐體積公式,即可求出結(jié)果;(2)先由線面垂直的性質(zhì)得到為中點時,有.再給出證明:取中點,連接,,,由線面垂直的判定定理,以及面面垂直的性質(zhì)定理,證明平面,再由線面垂直的性質(zhì)定理,即可得出結(jié)果.【詳解】(1)因為四邊形為矩形,所以,又平面平面,所以平面;又,所以,因此三棱錐的體積為:;(2)當(dāng)為中點時,有.證明如下:取中點,連接,,.∵為的中點,為的中點,∴,又∵,∴,∴四點共面.∵平面平面,平面平面,平面,,∴平面,又平面,∴,∵,為的中點,∴,又,∴平面,又平面,∴,即.【點睛】本題主要考查求棱錐的體積,以及補全線線垂直的條件,熟記棱錐體積公式,以及線面垂直、面面垂直的判定定理與性質(zhì)定理即可,屬于??碱}型.18、(1)(2)【解析】
(1)用正弦定理將式子化為,進行整理化簡可得的值,即得角B;(2)由余弦定理可得關(guān)于的等式,再利用基本不等式和三角形面積公式可得面積最大值。【詳解】(1)由題得,,,,解得,,.(2),由余弦定理得,,整理得,又,即,則的面積的最大值為.【點睛】本題考查用正弦定理求三角形內(nèi)角,由余弦定理和基本不等式求三角形面積最大值,是基礎(chǔ)題型。19、(1)3x+4y+3=1或3x+4y-7=1(2)3x-y+9=1或3x-y-3=1【解析】
試題分析:(1)將平行線的距離轉(zhuǎn)化為點到線的距離,用點到直線的距離公式求解;(2)由相互垂直設(shè)出所求直線方程,然后由點到直線的距離求解.試題解析:解:(1)設(shè)所求直線上任意一點P(x,y),由題意可得點P到直線的距離等于1,即,∴3x+4y-2=±5,即3x+4y+3=1或3x+4y-7=1.(2)所求直線方程為,由題意可得點P到直線的距離等于,即,∴或,即3x-y+9=1或3x-y-3=1.考點:1.兩條平行直線間的距離公式;2.兩直線的平行與垂直關(guān)系20、(1)(2)【解析】試題分析:(1)利用題意結(jié)合余弦定理可得;(2)利用題意結(jié)合正弦定理可得:.試題解析:(I)在中,由余弦定理得(II)設(shè)在中,由正弦定理,故點睛:在解決三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 六下語文古詩教學(xué)課件教學(xué)課件教學(xué)
- 三年級語文第26課課件教學(xué)課件教學(xué)
- 2024年酒泉客運從業(yè)資格證考試培訓(xùn)試題和答案
- 生理健康課件教學(xué)課件
- 2024年嘉峪關(guān)道路旅客運輸駕駛員從業(yè)資格考試題庫
- 2025屆四川省成都市實驗高級中學(xué)生物高二上期末教學(xué)質(zhì)量檢測模擬試題含解析
- 2024年福建客運資格專業(yè)能力考試考什么
- 2025屆江西省臨川一中南昌二中九江一中新余一中等九校重點中學(xué)協(xié)作體語文高三上期末調(diào)研試題含解析
- 2025屆江西省撫州第一中學(xué)生物高三上期末學(xué)業(yè)水平測試模擬試題含解析
- 2025屆福建省漳州市東山第二中學(xué)高三生物第一學(xué)期期末監(jiān)測試題含解析
- 冬季安全生產(chǎn)特點及預(yù)防措施
- 視頻短片制作合同范本
- 抑郁癥與睡眠障礙課件
- 供應(yīng)鏈墊資采購合同范本
- 內(nèi)部控制學(xué)李曉慧課后參考答案
- 大學(xué)生安全教育(在校篇)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- 如何“泡”開詩歌公開課一等獎市賽課獲獎?wù)n件
- RTL8365MB-CG-DataSheet-1.2英文完整版本
- 中班科學(xué)《森林運動會》 課件
- 幼兒園每月食品安全調(diào)度會議紀(jì)要模板5
- 升降機安全管理培訓(xùn)
評論
0/150
提交評論