山東泰安知行學校2024屆數(shù)學高一下期末教學質量檢測模擬試題含解析_第1頁
山東泰安知行學校2024屆數(shù)學高一下期末教學質量檢測模擬試題含解析_第2頁
山東泰安知行學校2024屆數(shù)學高一下期末教學質量檢測模擬試題含解析_第3頁
山東泰安知行學校2024屆數(shù)學高一下期末教學質量檢測模擬試題含解析_第4頁
山東泰安知行學校2024屆數(shù)學高一下期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東泰安知行學校2024屆數(shù)學高一下期末教學質量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.邊長為1的正方形上有一動點,則向量的范圍是()A. B. C. D.2.某學校隨機抽取20個班,調查各班中有網上購物經歷的人數(shù),所得數(shù)據的莖葉圖如圖所示.以組距為5將數(shù)據分組成[0,5),[5,10),…,[30,35),[35,40]時,所作的頻率分布直方圖是()A. B.C. D.3.已知的內角的對邊分別為,若,則()A. B. C. D.4.在空間中,給出下列說法:①平行于同一個平面的兩條直線是平行直線;②垂直于同一條直線的兩個平面是平行平面;③若平面內有不共線的三點到平面的距離相等,則;④過平面的一條斜線,有且只有一個平面與平面垂直.其中正確的是()A.①③ B.②④ C.①④ D.②③5.設,,,則,,的大小關系是()A. B. C. D.6.若是兩條不同的直線,是三個不同的平面,則下列結論中正確的是()A.若,則 B.若,則C.若,則 D.若,則7.在平面直角坐標系中,圓:,圓:,點,動點,分別在圓和圓上,且,為線段的中點,則的最小值為A.1 B.2 C.3 D.48.三棱錐中,平面且是邊長為的等邊三角形,則該三棱錐外接球的表面積為()A. B. C. D.9.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如.在不超過30的素數(shù)中,隨機選取兩個不同的數(shù),其和等于30的概率是A. B. C. D.10.已知點是直線上一動點、是圓的兩條切線,、是切點,若四邊形的最小面積是,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則____.12.如圖是一正方體的表面展開圖.、、都是所在棱的中點.則在原正方體中:①與異面;②平面;③平面平面;④與平面形成的線面角的正弦值是;⑤二面角的余弦值為.其中真命題的序號是______.13.已知為數(shù)列{an}的前n項和,且,,則{an}的首項的所有可能值為______14.已知扇形的半徑為6,圓心角為,則該扇形的面積為_______.15.設函數(shù)的部分圖象如圖所示,則的表達式______.16.已知,向量的夾角為,則的最大值為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求點在上,點在上,且對角線過點,已知米,米.(1)要使矩形的面積大于64平方米,則的長應在什么范圍內?(2)當?shù)拈L為多少時,矩形花壇的面積最?。坎⑶蟪鲎钚≈?18.在中,角所對的邊為,且滿足(1)求角的值;(2)若且,求的取值范圍.19.在等比數(shù)列中,.(1)求的通項公式;(2)若,求數(shù)列的前項和.20.已知為數(shù)列的前項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.21.已知數(shù)列的前項和為,點在函數(shù)的圖像上.(1)求數(shù)列的通項;(2)設數(shù)列,求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

分類,按在正方形的四條邊上分別求解.【詳解】如圖,分別以為建立平面直角坐標系,,設,,∴,當在邊或上時,,所以,當在邊上時,,,當在邊上時,,,∴的取值范圍是.故選:A.【點睛】本題考查平面向量的數(shù)量積,通過建立坐標系,把向量和數(shù)量積用坐標表示,使問題簡單化.2、A【解析】由于頻率分布直方圖的組距為5,去掉C、D,又[0,5),[5,10)兩組各一人,去掉B,應選A.3、B【解析】

已知兩角及一對邊,求另一邊,我們只需利用正弦定理.【詳解】在三角形中由正弦定理公式:,所以選擇B【點睛】本題直接屬于正弦定理的直接考查,代入公式就能求解.屬于簡單題.4、B【解析】

說法①:可以根據線面平行的判定理判斷出本說法是否正確;說法②:根據線面垂直的性質和面面平行的判定定理可以判斷出本說法是否正確;說法③:當與相交時,是否在平面內有不共線的三點到平面的距離相等,進行判斷;說法④:可以通過反證法進行判斷.【詳解】①平行于同一個平面的兩條直線可能平行、相交或異面,不正確;易知②正確;③若平面內有不共線的三點到平面的距離相等,則與可能平行,也可能相交,不正確;易知④正確.故選B.【點睛】本題考查了線線位置關系、面面位置關系的判斷,分類討論是解題的關鍵,反證法是經常用到的方程.5、D【解析】

首先確定題中,,的取值范圍,再根據大小排序即可.【詳解】由題知,,,,所以排序得到.故選:D.【點睛】本題主要考查了比較指數(shù)對數(shù)的大小問題,屬于基礎題.6、C【解析】

試題分析:兩個平面垂直,一個平面內的直線不一定垂直于另一個平面,所以A不正確;兩個相交平面內的直線也可以平行,所以B不正確;垂直于同一個平面的兩個平面不一定垂直,也可能平行或相交,所以D不正確;根據面面垂直的判定定理知C正確.考點:空間直線、平面間的位置關系.【詳解】請在此輸入詳解!7、A【解析】

由得,根據向量的運算和兩點間的距離公式,求得點的軌跡方程,再利用點與圓的位置關系,即可求解的最小值,得到答案.【詳解】設,,,由得,即,由題意可知,MN為Rt△AMB斜邊上的中線,所以,則又由,則,可得,化簡得,∴點的軌跡是以為圓心、半徑等于的圓C3,∵M在圓C3內,∴MN的最小值即是半徑減去M到圓心的距離,即,故選A.【點睛】本題主要考查了圓的方程及性質的應用,以及點圓的最值問題,其中解答中根據圓的性質,求得點的軌跡方程,再利用點與圓的位置關系求解是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.8、C【解析】根據已知中底面是邊長為的正三角形,,平面,可得此三棱錐外接球,即為以為底面以為高的正三棱柱的外接球

∵是邊長為的正三角形,∴的外接圓半徑球心到的外接圓圓心的距離故球的半徑故三棱錐外接球的表面積故選C.9、C【解析】分析:先確定不超過30的素數(shù),再確定兩個不同的數(shù)的和等于30的取法,最后根據古典概型概率公式求概率.詳解:不超過30的素數(shù)有2,3,5,7,11,13,17,19,23,29,共10個,隨機選取兩個不同的數(shù),共有種方法,因為,所以隨機選取兩個不同的數(shù),其和等于30的有3種方法,故概率為,選C.點睛:古典概型中基本事件數(shù)的探求方法:(1)列舉法.(2)樹狀圖法:適合于較為復雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.10、D【解析】

作出圖形,可知,由四邊形的最小面積是,可知此時取最小值,由勾股定理可知的最小值為,即圓心到直線的距離為,結合點到直線的距離公式可求出的值.【詳解】如下圖所示,由切線長定理可得,又,,且,,所以,四邊形的面積為面積的兩倍,圓的標準方程為,圓心為,半徑為,四邊形的最小面積是,所以,面積的最小值為,又,,由勾股定理,當直線與直線垂直時,取最小值,即,整理得,,解得.故選:D.【點睛】本題考查由四邊形面積的最值求參數(shù)的值,涉及直線與圓的位置關系的應用,解題的關鍵就是確定動點的位置,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由于,則,然后將代入中,化簡即可得結果.【詳解】,,,故答案為.【點睛】本題考查了同角三角函數(shù)的關系,屬于基礎題.同角三角函數(shù)之間的關系包含平方關系與商的關系,平方關系是正弦與余弦值之間的轉換,商的關系是正余弦與正切之間的轉換.12、①②④【解析】

將正方體的表面展開圖還原成正方體,利用正方體中線線、線面以及面面關系,以及直線與平面所成角的定義和二面角的定義進行判斷.【詳解】根據條件將正方體進行還原如下圖所示:對于命題①,由圖形可知,直線與異面,命題①正確;對于命題②,、分別為所在棱的中點,易證四邊形為平行四邊形,所以,,平面,平面,平面,命題②正確;對于命題③,在正方體中,平面,由于四邊形為平行四邊形,,平面.、平面,,.則二面角所成的角為,顯然不是直角,則平面與平面不垂直,命題③錯誤;對于命題④,設正方體的棱長為,易知平面,則與平面所成的角為,由勾股定理可得,,在中,,即直線與平面所成線面角的正弦值為,命題④正確;對于命題⑤,在正方體中,平面,且,平面.、平面,,,所以,二面角的平面角為,在中,由勾股定理得,,由余弦定理得,命題⑤錯誤.故答案為①②④.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面關系的判斷以及線面角、二面角的計算,判斷時要從空間中有關線線、線面、面面關系的平行或垂直的判定或性質定理出發(fā)進行推導,在計算空間角時,則應利用空間角的定義來求解,考查推理能力與運算求解能力,屬于中等題.13、【解析】

根據題意,化簡得,利用式相加,得到,進而得到,即可求解結果.【詳解】因為,所以,所以,將以上各式相加,得,又,所以,解得或.【點睛】本題主要考查了數(shù)列的遞推關系式應用,其中解答中利用數(shù)列的遞推關系式,得到關于數(shù)列首項的方程求解是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.14、【解析】

用弧度制表示出圓心角,然后根據扇形面積公式計算出扇形的面積.【詳解】圓心角為對應的弧度為,所以扇形的面積為.故答案為:【點睛】本小題主要考查角度制和弧度制互化,考查扇形面積的計算,屬于基礎題.15、【解析】

根據圖象的最高點得到,由圖象得到,故得,然后通過代入最高點的坐標或運用“五點法”得到,進而可得函數(shù)的解析式.【詳解】由圖象可得,∴,∴,∴.又點在函數(shù)的圖象上,∴,∴,∴.又,∴.∴.故答案為.【點睛】已知圖象確定函數(shù)解析式的方法(1)由圖象直接得到,即最高點的縱坐標.(2)由圖象得到函數(shù)的周期,進而得到的值.(3)的確定方法有兩種.①運用代點法求解,通過把圖象的最高點或最低點的坐標代入函數(shù)的解析式求出的值;②運用“五點法”求解,即由函數(shù)最開始與軸的交點(最靠近原點)的橫坐標為(即令,)確定.16、【解析】

將兩邊平方,化簡后利用基本不等式求得的最大值.【詳解】將兩邊平方并化簡得,由基本不等式得,故,即,即,所以的最大值為.【點睛】本小題主要考查平面向量模的運算,考查利用基本不等式求最值,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)時,【解析】

(1)設,有題知,得到,再計算矩形的面積,解不等式即可.(2)首先將花壇的面積化簡為,再利用基本不等式的性質即可求出面積的最小值.【詳解】(1)設,.因為四邊形為矩形,所以.即:,解得:.所以,.所以,,解得或.因為,所以或.所以的長度范圍是.(2)因為.當且僅當,即時取“”.所以當時,.【點睛】本題第一問考查了函數(shù)模型,第二問考查了基本不等式,屬于中檔題.18、(1)或;(2).【解析】試題分析:(1)利用升冪公式及兩角和與差的余弦公式化簡已知等式,可得,從而得,注意兩解;(2)由,得,利用正弦定理得,從而可變?yōu)?,利用三角形的內角和把此式化為一個角的函數(shù),再由兩角和與差的正弦公式化為一個三角函數(shù)形式,由的范圍()結合正弦函數(shù)性質可得取值范圍.試題解析:(1)由已知,得,化簡得,故或;(2)∵,∴,由正弦定理,得,故,∵,所以,,∴.19、(1)(2)【解析】

(1)將已知條件化為和后,聯(lián)立解出和后即可得到通項公式;(2)根據錯位相減法可得結果.【詳解】(1)因為,所以解得故的通項公式為.(2)由(1)可得,則,①,②①-②得.所以故.【點睛】本題考查了等比數(shù)列通項公式基本量的計算,考查了錯位相減法求數(shù)列的和,屬于中檔題.20、(1)(2)當時,;當時,;當時,【解析】

(1)利用,時單獨討論.求解.

(2)對時單獨討論,當時,對從到的和應用錯位相減法求和.【詳解】當時,,得.當時,即.所以數(shù)列是以3為首項,3為公比的等比數(shù)列.所以(2)設,則..當時,當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論