貴州省貴陽市清鎮(zhèn)北大培文學(xué)校貴州校區(qū)2023-2024學(xué)年高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第1頁
貴州省貴陽市清鎮(zhèn)北大培文學(xué)校貴州校區(qū)2023-2024學(xué)年高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第2頁
貴州省貴陽市清鎮(zhèn)北大培文學(xué)校貴州校區(qū)2023-2024學(xué)年高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第3頁
貴州省貴陽市清鎮(zhèn)北大培文學(xué)校貴州校區(qū)2023-2024學(xué)年高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第4頁
貴州省貴陽市清鎮(zhèn)北大培文學(xué)校貴州校區(qū)2023-2024學(xué)年高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

貴州省貴陽市清鎮(zhèn)北大培文學(xué)校貴州校區(qū)2023-2024學(xué)年高考適應(yīng)性考試數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)滿足當(dāng)時(shí),,且當(dāng)時(shí),;當(dāng)時(shí),且).若函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)恰好有3對(duì),則的取值范圍是()A. B. C. D.2.的展開式中有理項(xiàng)有()A.項(xiàng) B.項(xiàng) C.項(xiàng) D.項(xiàng)3.設(shè)為等差數(shù)列的前項(xiàng)和,若,則A. B.C. D.4.在中,為邊上的中點(diǎn),且,則()A. B. C. D.5.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.6.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時(shí)間,采用分層抽樣的方法從高生和初中生中抽取一個(gè)容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.7.在中,是的中點(diǎn),,點(diǎn)在上且滿足,則等于()A. B. C. D.8.設(shè)分別為的三邊的中點(diǎn),則()A. B. C. D.9.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.10.已知函數(shù),則不等式的解集是()A. B. C. D.11.設(shè)m,n為直線,、為平面,則的一個(gè)充分條件可以是()A.,, B.,C., D.,12.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),且滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為()A.9 B.10 C.18 D.20二、填空題:本題共4小題,每小題5分,共20分。13.動(dòng)點(diǎn)到直線的距離和他到點(diǎn)距離相等,直線過且交點(diǎn)的軌跡于兩點(diǎn),則以為直徑的圓必過_________.14.已知函數(shù),則關(guān)于的不等式的解集為_______.15.已知,,,,則______.16.已知全集,集合則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時(shí),求函數(shù)在上最小值.18.(12分)設(shè)的內(nèi)角、、的對(duì)邊長分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.19.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.20.(12分)已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),與的公共弦的長為.(1)求的方程;(2)過點(diǎn)的直線與相交于、兩點(diǎn),與相交于、兩點(diǎn),且與同向,設(shè)在點(diǎn)處的切線與軸的交點(diǎn)為,證明:直線繞點(diǎn)旋轉(zhuǎn)時(shí),總是鈍角三角形;(3)為上的動(dòng)點(diǎn),、為長軸的兩個(gè)端點(diǎn),過點(diǎn)作的平行線交橢圓于點(diǎn),過點(diǎn)作的平行線交橢圓于點(diǎn),請(qǐng)問的面積是否為定值,并說明理由.21.(12分)已知點(diǎn)、分別在軸、軸上運(yùn)動(dòng),,.(1)求點(diǎn)的軌跡的方程;(2)過點(diǎn)且斜率存在的直線與曲線交于、兩點(diǎn),,求的取值范圍.22.(10分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動(dòng)點(diǎn),求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對(duì)稱的圖象,分類利用圖像列出有3個(gè)交點(diǎn)時(shí)滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對(duì)稱的圖象,如圖所示,當(dāng)時(shí),對(duì)稱后的圖象不可能與在的圖象有3個(gè)交點(diǎn);當(dāng)時(shí),要使函數(shù)關(guān)于原點(diǎn)對(duì)稱后的圖象與所作的圖象有3個(gè)交點(diǎn),則,解得.故選:C.【點(diǎn)睛】本題考查利用函數(shù)圖象解決函數(shù)的交點(diǎn)個(gè)數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.2、B【解析】

由二項(xiàng)展開式定理求出通項(xiàng),求出的指數(shù)為整數(shù)時(shí)的個(gè)數(shù),即可求解.【詳解】,,當(dāng),,,時(shí),為有理項(xiàng),共項(xiàng).故選:B.【點(diǎn)睛】本題考查二項(xiàng)展開式項(xiàng)的特征,熟練掌握二項(xiàng)展開式的通項(xiàng)公式是解題的關(guān)鍵,屬于基礎(chǔ)題.3、C【解析】

根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.4、A【解析】

由為邊上的中點(diǎn),表示出,然后用向量模的計(jì)算公式求模.【詳解】解:為邊上的中點(diǎn),,故選:A【點(diǎn)睛】在三角形中,考查中點(diǎn)向量公式和向量模的求法,是基礎(chǔ)題.5、D【解析】

把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)模的公式計(jì)算得答案.【詳解】解:,則.故選:D.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.6、B【解析】

利用某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比計(jì)算即可.【詳解】由題意,,解得.故選:B.【點(diǎn)睛】本題考查簡單隨機(jī)抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.7、B【解析】

由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點(diǎn).②性質(zhì):或取得最小值③坐標(biāo)法:P點(diǎn)坐標(biāo)是三個(gè)頂點(diǎn)坐標(biāo)的平均數(shù).8、B【解析】

根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運(yùn)算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點(diǎn)睛】本題考查了向量加法的線性運(yùn)算,屬于基礎(chǔ)題.9、D【解析】

依次將選項(xiàng)中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時(shí),在上不單調(diào),故A不正確;當(dāng)時(shí),在上單調(diào)遞減,故B不正確;當(dāng)時(shí),在上不單調(diào),故C不正確;當(dāng)時(shí),在上單調(diào)遞增,故D正確.故選:D【點(diǎn)睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.10、B【解析】

由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】函數(shù),可得,時(shí),,單調(diào)遞增,∵,故不等式的解集等價(jià)于不等式的解集..∴.故選:B.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.11、B【解析】

根據(jù)線面垂直的判斷方法對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】對(duì)于A選項(xiàng),當(dāng),,時(shí),由于不在平面內(nèi),故無法得出.對(duì)于B選項(xiàng),由于,,所以.故B選項(xiàng)正確.對(duì)于C選項(xiàng),當(dāng),時(shí),可能含于平面,故無法得出.對(duì)于D選項(xiàng),當(dāng),時(shí),無法得出.綜上所述,的一個(gè)充分條件是“,”故選:B【點(diǎn)睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.12、B【解析】

由已知可得函數(shù)f(x)的周期與對(duì)稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對(duì)稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當(dāng)x∈[0,1]時(shí),f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個(gè)交點(diǎn),即函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)為10.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用動(dòng)點(diǎn)到直線的距離和他到點(diǎn)距離相等,,可知?jiǎng)狱c(diǎn)的軌跡是以為焦點(diǎn)的拋物線,從而可求曲線的方程,將,代入,利用韋達(dá)定理,可得,從而可知以為直徑的圓經(jīng)過原點(diǎn)O.【詳解】設(shè)點(diǎn),由題意可得,,,可得,設(shè)直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經(jīng)過原點(diǎn).故答案為:(0,0)【點(diǎn)睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時(shí)考查了方程的思想和韋達(dá)定理,考查了運(yùn)算能力,屬于中檔題.14、【解析】

判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運(yùn)用單調(diào)性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)遞增,,即,∴∴,即x>故答案為:【點(diǎn)睛】本題考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用:解不等式,考查轉(zhuǎn)化思想和運(yùn)算能力,屬于中檔題.15、【解析】

由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計(jì)算得的值.【詳解】,,,,,,,,.故答案為:【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.16、【解析】

根據(jù)補(bǔ)集的定義求解即可.【詳解】解:.故答案為.【點(diǎn)睛】本題主要考查了補(bǔ)集的運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)當(dāng)時(shí),函數(shù)的最小值是;當(dāng)時(shí),函數(shù)的最小值是【解析】

(1)求出導(dǎo)函數(shù),并且解出它的零點(diǎn)x=,再分區(qū)間討論導(dǎo)數(shù)的正負(fù),即可得到函數(shù)f(x)的單調(diào)區(qū)間;

(2)分三種情況加以討論,結(jié)合函數(shù)的單調(diào)性與函數(shù)值的大小比較,即可得到當(dāng)0<a<ln2時(shí),函數(shù)f(x)的最小值是-a;當(dāng)a≥ln2時(shí),函數(shù)f(x)的最小值是ln2-2a.【詳解】函數(shù)的定義域

為.

因?yàn)?,令,可得?/p>

當(dāng)時(shí),;當(dāng)時(shí),,綜上所述:可知函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng),即時(shí),函數(shù)在區(qū)間上是減函數(shù),

的最小值是當(dāng),即時(shí),函數(shù)在區(qū)間上是增函數(shù),的最小值是當(dāng),即時(shí),函數(shù)在上是增函數(shù),在上是減函數(shù).

又,

當(dāng)時(shí),的最小值是;

當(dāng)時(shí),的最小值為綜上所述,結(jié)論為當(dāng)時(shí),函數(shù)的最小值是;

當(dāng)時(shí),函數(shù)的最小值是.【點(diǎn)睛】求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號(hào),如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減右增),那么在處取極小值.(5)如果只有一個(gè)極值點(diǎn),則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點(diǎn)值的函數(shù)值與極值的大小18、(1);(2).【解析】

(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當(dāng)且僅當(dāng)時(shí)取最大值.故的最大值為.【點(diǎn)睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應(yīng)用,以及利用三角恒等變換求函數(shù)的最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題19、(1)見解析;(2)【解析】

(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標(biāo)系,求平面的一個(gè)法向量與平面的一個(gè)法向量,再利用向量數(shù)量積運(yùn)算即可.【詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,,所以,,因?yàn)?,所以平面,又平面,所?(2)設(shè),,由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的中點(diǎn),為的中點(diǎn),所以平行且相等,從而平面,又,所以,,兩兩垂直,如圖,建立空間直角坐標(biāo)系,,,由平面幾何知識(shí),得.則,,,,所以,,.設(shè)平面的法向量為,由,可得,令,則,,所以.同理,平面的一個(gè)法向量為.設(shè)平面與平面所成角為,則,所以.【點(diǎn)睛】本題考查了線面垂直的判定定理及二面角的平面角的求法,重點(diǎn)考查了空間向量的應(yīng)用,屬中檔題.20、(1);(2)證明見解析;(3)是,理由見解析.【解析】

(1)根據(jù)兩個(gè)曲線的焦點(diǎn)相同,得到,再根據(jù)與的公共弦長為得出,可求出和的值,進(jìn)而可得出曲線的方程;(2)設(shè)點(diǎn),根據(jù)導(dǎo)數(shù)的幾何意義得到曲線在點(diǎn)處的切線方程,求出點(diǎn)的坐標(biāo),利用向量的數(shù)量積得出,則問題得以證明;(3)設(shè)直線,直線,、、,推導(dǎo)出以及,求出和,通過化簡計(jì)算可得出為定值,進(jìn)而可得出結(jié)論.【詳解】(1)由知其焦點(diǎn)的坐標(biāo)為,也是橢圓的一個(gè)焦點(diǎn),,①又與的公共弦的長為,與都關(guān)于軸對(duì)稱,且的方程為,由此易知與的公共點(diǎn)的坐標(biāo)為,,②聯(lián)立①②,得,,故的方程為;(2)如圖,,由得,在點(diǎn)處的切線方程為,即,令,得,即,,而,于是,因此是銳角,從而是鈍角.故直線繞點(diǎn)旋轉(zhuǎn)時(shí),總是鈍角三角形;(3)設(shè)直線,直線,、、,則,設(shè)向量和的夾角為,則的面積為,由,可得,同理可得,故有.又,故,則,因此,的面積為定值.【點(diǎn)睛】本題考查了圓錐曲線的和直線的位置與關(guān)系,考查鈍角三角形的判定以及三角形面積為定值的求解,關(guān)鍵是聯(lián)立方程,構(gòu)造方程,利用韋達(dá)定理,以及向量的關(guān)系,得到關(guān)于斜率的方程,計(jì)算量大,屬于難題.21、(1)(2)【解析】

(1)設(shè)坐標(biāo)后根據(jù)向量的坐標(biāo)運(yùn)算即可得到軌跡方程.(2)聯(lián)立直線和橢圓方程,用坐標(biāo)表示出,得到,所以,代入韋達(dá)定理即可求解.【詳解】(1)設(shè),,則,設(shè),由得.又由于,化簡得的軌跡的方程為.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論