版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆甘肅省寧縣數(shù)學(xué)高一下期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.辦公室裝修一新,放些植物花草可以清除異味,公司提供綠蘿、文竹、碧玉、蘆薈4種植物供員工選擇,每個員工任意選擇2種,則員工甲和乙選擇的植物全不同的概率為:A. B. C. D.2.若拋物線上一點(diǎn)到焦點(diǎn)的距離是該點(diǎn)到軸距離的3倍,則()A. B. C. D.73.下列函數(shù)中,在區(qū)間上為增函數(shù)的是().A. B. C. D.4.下圖是500名學(xué)生某次數(shù)學(xué)測試成績(單位:分)的頻率分布直方圖,則這500名學(xué)生中測試成績在區(qū)間[90,100)中的學(xué)生人數(shù)是A.60 B.55 C.45 D.505.等差數(shù)列中,,則的值為()A.14 B.17 C.19 D.216.函數(shù)的最小正周期是()A. B. C. D.7.若,則下列不等式成立的是A. B. C. D.8.某幾何體三視圖如圖所示,則該幾何體中的棱與面相互平行的有()A.2對 B.3對 C.4對 D.5對9.將的圖象向左平移個單位長度,再向下平移個單位長度得到的圖象,若,則()A. B. C. D.10.將一個總體分為甲、乙、丙三層,其個體數(shù)之比為,若用分層抽樣的方法抽取容量為200的樣本,則應(yīng)從丙層中抽取的個體數(shù)為()A.20 B.40 C.60 D.100二、填空題:本大題共6小題,每小題5分,共30分。11.已知點(diǎn)是所在平面內(nèi)的一點(diǎn),若,則__________.12.函數(shù)的零點(diǎn)個數(shù)為__________.13.若x、y滿足約束條件,則的最大值為________.14.已知向量(1,x2),(﹣2,y2﹣2),若向量,共線,則xy的最大值為_____.15.已知,,則當(dāng)最大時,________.16.若數(shù)列的前項和,滿足,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn).(1)求證:BD⊥平面PAC;(2)若∠ABC=60°,求證:平面PAB⊥平面PAE;18.已知的內(nèi)角A,B,C所對的邊分別為a,b,c,其外接圓的面積為,且.(1)求邊長c;(2)若的面積為,求的周長.19.某中學(xué)高二年級的甲、乙兩個班中,需根據(jù)某次數(shù)學(xué)預(yù)賽成績選出某班的5名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次預(yù)賽他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學(xué)生成績的平均分是83,乙班5名學(xué)生成績的中位數(shù)是1.(1)求出x,y的值,且分別求甲、乙兩個班中5名學(xué)生成績的方差、,并根據(jù)結(jié)果,你認(rèn)為應(yīng)該選派哪一個班的學(xué)生參加決賽?(2)從成績在85分及以上的學(xué)生中隨機(jī)抽取2名.求至少有1名來自甲班的概率.20.(1)設(shè),直接用任意角的三角比定義證明:.(2)給出兩個公式:①;②.請僅以上述兩個公式為已知條件證明:.21.某公司為了提高工效,需分析該公司的產(chǎn)量臺與所用時間小時之間的關(guān)系,為此做了四次統(tǒng)計,所得數(shù)據(jù)如下:產(chǎn)品臺數(shù)臺2345所用時間小時34求出y關(guān)于x的線性回歸方程;預(yù)測生產(chǎn)10臺產(chǎn)品需要多少小時?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
從公司提供的4中植物中任意選擇2種,求得員工甲和乙共有種選法,再由任選2種有種,得到員工甲和乙選擇的植物全不同有種選法,利用古典概型的概率計算公式,即可求解.【詳解】由題意,從公司提供綠蘿、文竹、碧玉、蘆薈4種植物每個員工任意選擇2種,則員工甲和乙共有種不同的選法,又從公司提供綠蘿、文竹、碧玉、蘆薈4種植物中,任選2種,共有種選法,則員工甲和乙選擇的植物全不同,共有種不同的選法,所以員工甲和乙選擇的植物全不同的概率為,故選A.【點(diǎn)睛】本題主要考查了古典概型及其概率的計算,以及排列、組合的應(yīng)用,其中解答中認(rèn)真審題,合理利用排列、組合求得基本事件的個數(shù),利用古典概型的概率計算公式求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.2、A【解析】由題意,焦點(diǎn)坐標(biāo),所以,解得,故選A。3、B【解析】試題分析:根據(jù)初等函數(shù)的圖象,可得函數(shù)在區(qū)間(0,1)上的單調(diào)性,從而可得結(jié)論.解:由題意,A的底數(shù)大于0小于1、C是圖象在一、三象限的單調(diào)減函數(shù)、D是余弦函數(shù),,在(0,+∞)上不單調(diào),B的底數(shù)大于1,在(0,+∞)上單調(diào)增,故在區(qū)間(0,1)上是增函數(shù),故選B考點(diǎn):函數(shù)的單調(diào)性點(diǎn)評:本題考查函數(shù)的單調(diào)性,掌握初等函數(shù)的圖象與性質(zhì)是關(guān)鍵.4、D【解析】分析:根據(jù)頻率分布直方圖可得測試成績落在中的頻率,從而可得結(jié)果.詳解:由頻率分布直方圖可得測試成績落在中的頻率為,所以測試成績落在中的人數(shù)為,,故選D.點(diǎn)睛:本題主要考查頻率分布直方圖的應(yīng)用,屬于中檔題.直觀圖的主要性質(zhì)有:(1)直方圖中各矩形的面積之和為;(2)組距與直方圖縱坐標(biāo)的乘積為該組數(shù)據(jù)的頻率.5、B【解析】
利用等差數(shù)列的性質(zhì),.【詳解】,解得:.故選B.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì),屬于基礎(chǔ)題型.6、C【解析】
將函數(shù)化為,再根據(jù)周期公式可得答案.【詳解】因為=,所以最小正周期.故選:C【點(diǎn)睛】本題考查了兩角和的正弦公式的逆用,考查了正弦型函數(shù)的周期公式,屬于基礎(chǔ)題.7、C【解析】
利用的單調(diào)性直接判斷即可。【詳解】因為在上遞增,又,所以成立。故選:C【點(diǎn)睛】本題主要考查了冪函數(shù)的單調(diào)性,屬于基礎(chǔ)題。8、C【解析】
本道題結(jié)合三視圖,還原直觀圖,結(jié)合直線與平面判定,即可。【詳解】結(jié)合三視圖,還原直觀圖,得到AB平行平面OCD,DC平行平面OBA,BC平行平面ODA,DA平行平面OBC,故有4對。故選C。【點(diǎn)睛】本道題考查了三視圖還原直觀圖,難度中等。9、D【解析】因為,所以,因此,選D.點(diǎn)睛:三角函數(shù)的圖象變換,提倡“先平移,后伸縮”,但“先伸縮,后平移”也常出現(xiàn)在題目中,所以也必須熟練掌握.無論是哪種變形,切記每一個變換總是對字母而言.10、B【解析】
求出丙層所占的比例,然后求出丙層中抽取的個體數(shù)【詳解】因為甲、乙、丙三層,其個體數(shù)之比為,所以丙層所占的比例為,所以應(yīng)從丙層中抽取的個體數(shù)為,故本題選B.【點(diǎn)睛】本題考查了分層抽樣中某一層抽取的個體數(shù)的問題,考查了數(shù)學(xué)運(yùn)算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè)為的中點(diǎn),為的中點(diǎn),為的中點(diǎn),由得到,再進(jìn)一步分析即得解.【詳解】如圖,設(shè)為的中點(diǎn),為的中點(diǎn),為的中點(diǎn),因為,所以可得,整理得.又,所以,所以,又,所以.故答案為【點(diǎn)睛】本題主要考查向量的運(yùn)算法則和共線向量,意在考查學(xué)生對這些知識的理解掌握水平,解答本題的關(guān)鍵是作輔助線,屬于中檔題.12、3【解析】
運(yùn)用三角函數(shù)的誘導(dǎo)公式先將函數(shù)化簡,再在同一直角坐標(biāo)系中做出兩支函數(shù)的圖像,觀察其交點(diǎn)的個數(shù)即得解.【詳解】由三角函數(shù)的誘導(dǎo)公式得,所以令,求零點(diǎn)的個數(shù)轉(zhuǎn)化求方程根的個數(shù),因此在同一直角坐標(biāo)系分別做出和的圖象,觀察兩支圖象的交點(diǎn)的個數(shù)為個,注意在做的圖像時當(dāng)時,,故得解.【點(diǎn)睛】本題考查三角函數(shù)的有界性和余弦函數(shù)與對數(shù)函數(shù)的交點(diǎn)情況,屬于中檔題.13、18【解析】
先作出不等式組所表示的平面區(qū)域,再觀察圖像即可得解.【詳解】解:作出不等式組所表示的平面區(qū)域,如圖所示,由圖可得:目標(biāo)函數(shù)所在直線過點(diǎn)時,取最大值,即,故答案為:.【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,重點(diǎn)考查了作圖能力,屬基礎(chǔ)題.14、【解析】
由題意利用兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運(yùn)算,可得,再利用基本不等式,求得的最大值.【詳解】向量,,若向量,共線,則,,即,當(dāng)且僅當(dāng),時,取等號.故的最大值為,故答案為:.【點(diǎn)睛】本題主要考查兩個向量共線的性質(zhì),考查兩個向量坐標(biāo)形式的運(yùn)算和基本不等式,屬于基礎(chǔ)題.15、【解析】
根據(jù)正切的和角公式,將用的函數(shù)表示出來,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【詳解】故可得則當(dāng)且僅當(dāng),即時,此時有故答案為:.【點(diǎn)睛】本題考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.16、【解析】
令,得出,令,由可計算出在時的表達(dá)式,然后就是否符合進(jìn)行檢驗,由此可得出.【詳解】當(dāng)時,;當(dāng)時,則.也適合.綜上所述,.故答案為:.【點(diǎn)睛】本題考查利用求,一般利用來計算,但需要對進(jìn)行檢驗,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析;【解析】
(1)要證BD⊥平面PAC,只需在平面PAC上找到兩條直線跟BD垂直即證,顯然,從平面中可證,即證.(2)要證明平面PAB⊥平面PAE,可證平面即可.【詳解】(1)證明:因為平面,所以;因為底面是菱形,所以;因為,平面,所以平面.(2)證明:因為底面是菱形且,所以為正三角形,所以,因為,所以;因為平面,平面,所以;因為所以平面,平面,所以平面平面.【點(diǎn)睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理,立體幾何中的探索問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.18、(1)(2)【解析】
(1)計算得到,,利用正弦定理計算得到答案.(2)根據(jù)余弦定理得到,根據(jù)面積公式得到,得到答案.【詳解】(1),.,.,,.(2)由余弦定理得:.,,,,.的周長為.【點(diǎn)睛】本題考查了正弦定理,余弦定理和面積公式,意在考查學(xué)生的計算能力.19、(3)甲班參加;(4).【解析】
試題分析:(3)由題意知求出x=5,y=4.從而求出乙班學(xué)生的平均數(shù)為83,分別求出S34和S44,根據(jù)甲、乙兩班的平均數(shù)相等,甲班的方差小,得到應(yīng)該選派甲班的學(xué)生參加決賽.(4)成績在85分及以上的學(xué)生一共有5名,其中甲班有4名,乙班有3名,由此能求出隨機(jī)抽取4名,至少有3名來自甲班的概率.試題解析:(3)甲班的平均分為,易知.;又乙班的平均分為,∴;∵,,說明甲班同學(xué)成績更加穩(wěn)定,故應(yīng)選甲班參加.(4)分及以上甲班有人,設(shè)為;乙班有人,設(shè)為,從這人中抽取人的選法有:,共種,其中甲班至少有名學(xué)生的選法有種,則甲班至少有名學(xué)生被抽到的概率為.考點(diǎn):3.古典概型及其概率計算公式;4.莖葉圖.20、(1)證明見解析(2)證明見解析【解析】
(1)直接利用任意角的三角函數(shù)的定義證得.(2)由已知條件利用誘導(dǎo)公式,證明.【詳解】解:(1)將角的頂點(diǎn)置于平面直角坐標(biāo)系的原點(diǎn),始邊與軸的正半軸重合,設(shè)角終邊一點(diǎn)(非原點(diǎn)),其坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版現(xiàn)代化辦公室租賃場地合同樣本3篇
- 二零二五版精制粉原料供應(yīng)鏈風(fēng)險管理合同3篇
- 二零二五版地震監(jiān)測基站場地租賃與應(yīng)急救援合同3篇
- 2025年度醫(yī)療健康產(chǎn)業(yè)園區(qū)承包經(jīng)營合同范本3篇
- 二零二五版溫泉度假酒店SPA服務(wù)人員勞動合同3篇
- 二零二五年度離婚經(jīng)濟(jì)補(bǔ)償協(xié)議范本及調(diào)解服務(wù)合同3篇
- 二零二五年度能源項目合作開發(fā)PPP模式合同范本3篇
- 物業(yè)管理公司2025年度招投標(biāo)代理合同3篇
- 二零二五年度車位租賃合同:住宅小區(qū)車位使用權(quán)協(xié)議2篇
- 2025廠房買賣合同模板:高端裝備制造廠房交易3篇
- 以發(fā)展為導(dǎo)向共創(chuàng)教育新篇章-2024年期末校長總結(jié)講話稿
- 2025年焊工安全生產(chǎn)操作規(guī)程(2篇)
- 廣東省廣州越秀區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試卷(含答案)
- 臨床經(jīng)鼻高流量濕化氧療患者護(hù)理查房
- 2024年貴州省中考數(shù)學(xué)真題含解析
- 參考新醫(yī)大-中央財政支持地方高校發(fā)展專項資金建設(shè)規(guī)
- 《中醫(yī)內(nèi)科學(xué)關(guān)格》課件
- 2024年中國PCB板清洗劑市場調(diào)查研究報告
- 《紙管》規(guī)范要求
- 【數(shù)學(xué)】2021-2024年新高考數(shù)學(xué)真題考點(diǎn)分布匯
- 2024年育嬰師合同協(xié)議書
評論
0/150
提交評論