安徽省六安市一中2024年高一下數(shù)學期末調(diào)研試題含解析_第1頁
安徽省六安市一中2024年高一下數(shù)學期末調(diào)研試題含解析_第2頁
安徽省六安市一中2024年高一下數(shù)學期末調(diào)研試題含解析_第3頁
安徽省六安市一中2024年高一下數(shù)學期末調(diào)研試題含解析_第4頁
安徽省六安市一中2024年高一下數(shù)學期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省六安市一中2024年高一下數(shù)學期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,是邊上一點,,且,則的值為()A. B. C. D.2.直線的傾斜角是()A. B. C. D.3.為了得到函數(shù)y=sin(2x-πA.向右平移π6個單位 B.向右平移πC.向左平移π6個單位 D.向左平移π4.已知圓C1:x2+y2+4y+3=0,圓C2:x2+A.210-3 B.210+35.在中,角A,B,C所對的邊分別為a,b,c,若,,則是()A.純角三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形6.設(shè)集合,,,則()A. B. C. D.7.已知向量,則與().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向8.定義在上的函數(shù)若關(guān)于的方程(其中)有個不同的實根,,…,,則()A. B. C. D.9.已知直線經(jīng)過兩點,則的斜率為()A. B. C. D.10.在空間四邊形中,,,,分別是,的中點,,則異面直線與所成角的大小為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.點與點關(guān)于直線對稱,則直線的方程為______.12.若,則的取值范圍是________.13.已知正實數(shù)x,y滿足,則的最小值為________.14.已知,則________.15.已知數(shù)列,其中,若數(shù)列中,恒成立,則實數(shù)的取值范圍是_______.16.直線的傾斜角為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),數(shù)列中,若,且.(1)求證:數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列的前項和為,求證:.18.已知函數(shù)的圖象關(guān)于直線對稱,且圖象上相鄰兩個最高點的距離為.(1)求與的值;(2)若,求的值.19.如圖,在△ABC中,A(5,–2),B(7,4),且AC邊的中點M在y軸上,BC的中點N在x軸上.(1)求點C的坐標;(2)求△ABC的面積.20.智能手機的出現(xiàn),改變了我們的生活,同時也占用了我們大量的學習時間.某市教育機構(gòu)從名手機使用者中隨機抽取名,得到每天使用手機時間(單位:分鐘)的頻率分布直方圖(如圖所示),其分組是:,.(1)根據(jù)頻率分布直方圖,估計這名手機使用者中使用時間的中位數(shù)是多少分鐘?(精確到整數(shù))(2)估計手機使用者平均每天使用手機多少分鐘?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)(3)在抽取的名手機使用者中在和中按比例分別抽取人和人組成研究小組,然后再從研究小組中選出名組長.求這名組長分別選自和的概率是多少?21.如右圖,某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為nmile,在A處看燈塔C在貨輪的北偏西30°,距離為nmile,貨輪由A處向正北航行到D處時,再看燈塔B在北偏東120°,求:(1)A處與D處的距離;(2)燈塔C與D處的距離.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù),用基向量表示,然后與題目條件對照,即可求出.【詳解】由在中,是邊上一點,,則,即,故選.【點睛】本題主要考查了平面向量基本定理的應(yīng)用及向量的線性運算.2、D【解析】

先求出直線的斜率,再求直線的傾斜角.【詳解】由題得直線的斜率.故選:D【點睛】本題主要考查直線的斜率和傾斜角的計算,意在考查學生對該知識的理解掌握水平和分析推理能力.3、A【解析】

根據(jù)函數(shù)平移變換的方法,由2x→2x-π3即2x→2(x-π【詳解】根據(jù)函數(shù)平移變換,由y=sin2x變換為只需將y=sin2x的圖象向右平移π6【點睛】本題主要考查了三角函數(shù)圖象的平移變換,解題關(guān)鍵是看自變量上的變化量,屬于中檔題.4、A【解析】

求出圓C1,C2的圓心坐標和半徑,作出圓C1關(guān)于直線l的對稱圓C1',連結(jié)C1'C2,則C1'C2與直線l的交點即為P點,此時M點為P【詳解】由圓C1:x可知圓C1圓心為0,-2圓C2圓心為3,-1圓C1關(guān)于直線l:y=x+1的對稱圓為圓C連結(jié)C1'C2,交l于P,則此時M點為PC1'與圓C1'的交點關(guān)于直線l對稱的點,N最小值為C1而C1∴PM+PN【點睛】本題考查了圓方程的綜合應(yīng)用,考查了利用對稱關(guān)系求曲線上兩點間的最小距離,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.解決解析幾何中的最值問題一般有兩種方法:一是幾何意義,特別是用曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.5、B【解析】

利用正弦定理結(jié)合條件,得到,再由,結(jié)合余弦定理,得到,從而得到答案.【詳解】在中,由正弦定理得,而,所以得到,即,為的內(nèi)角,所以,因為,所以,由余弦定理得.為的內(nèi)角,所以,所以,為等邊三角形.故選:B.【點睛】本題考查正弦定理和余弦定理判斷三角形形狀,屬于簡單題.6、A【解析】因為,所以,又因為,,故選A.7、A【解析】

通過計算兩個向量的數(shù)量積,然后再判斷兩個向量能否寫成的形式,這樣可以選出正確答案.【詳解】因為,,所以,而不存在實數(shù),使成立,因此與不共線,故本題選A.【點睛】本題考查了兩個平面向量垂直的判斷,考查了平面向量共線的判斷,考查了數(shù)學運算能力.8、C【解析】畫出函數(shù)的圖象,如圖,由圖可知函數(shù)的圖象關(guān)于對稱,解方程方程,得或,時有三個根,,時有兩個根,所以關(guān)于的方程共有五個根,,,故選C.【方法點睛】本題主要考查函數(shù)的圖象與性質(zhì)以及函數(shù)與方程思想、數(shù)形結(jié)合思想的應(yīng)用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學問題的一種重要思想方法,.函數(shù)圖象是函數(shù)的一種表達形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來,圖象的應(yīng)用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì).9、A【解析】

直接代入兩點的斜率公式,計算即可得出答案?!驹斀狻抗蔬xA【點睛】本題考查兩點的斜率公式,屬于基礎(chǔ)題。10、D【解析】

平移兩條異面直線到相交,根據(jù)余弦定理求解.【詳解】如圖所示:設(shè)的中點為,連接,所以,則是所成的角或其補角,又根據(jù)余弦定理得:,所以,異面直線與所成角的為,故選D.【點睛】本題考查異面直線所成的角和余弦定理.注意異面直線所成的角的取值范圍是.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)和關(guān)于直線對稱可得直線和直線垂直且中點在直線上,從而可求得直線的斜率,利用點斜式可得直線方程.【詳解】由,得:且中點坐標為和關(guān)于直線對稱且在上的方程為:,即:本題正確結(jié)果:【點睛】本題考查根據(jù)兩點關(guān)于直線對稱求解直線方程的問題,關(guān)鍵是明確兩點關(guān)于直線對稱則連線與對稱軸垂直,且中點必在對稱軸上,屬于??碱}型.12、【解析】

利用反函數(shù)的運算法則,定義及其性質(zhì),求解即可.【詳解】由,得所以,又因為,所以.故答案為:【點睛】本題考查反余弦函數(shù)的運算法則,反函數(shù)的定義域,考查學生計算能力,屬于基礎(chǔ)題.13、4【解析】

將變形為,展開,利用基本不等式求最值.【詳解】解:,當時等號成立,又,得,此時等號成立,故答案為:4.【點睛】本題考查基本不等式求最值,特別是掌握“1”的妙用,是基礎(chǔ)題.14、【解析】

利用向量內(nèi)積的坐標運算以及向量模的坐標表示,準確運算,即可求解.【詳解】由題意,向量,則,,所以.故答案為【點睛】本題主要考查了向量內(nèi)積的坐標運算,以及向量模的坐標運算的應(yīng)用,其中解答中熟記向量的數(shù)量積的運算公式,準確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、【解析】

由函數(shù)(數(shù)列)單調(diào)性確定的項,哪些項取,哪些項取,再由是最小項,得不等關(guān)系.【詳解】由題意數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,存在,使得時,,當時,,∵數(shù)列中,是唯一的最小項,∴或,或,或,綜上.∴的取值范圍是.故答案為:.【點睛】本題考查數(shù)列的單調(diào)性與最值.解題時楞借助函數(shù)的單調(diào)性求解.但數(shù)列是特殊的函數(shù),它的自變量只能取正整數(shù),因此討論時與連續(xù)函數(shù)有一些區(qū)別.16、【解析】試題分析:由直線方程可知斜率考點:直線傾斜角與斜率三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)將代入到函數(shù)表達式中,得,兩邊都倒過來,即可證明數(shù)列是等比數(shù)列;(2)由(1)得出an的通項公式,然后根據(jù)不等式<在求和時進行放縮法的應(yīng)用,再根據(jù)等比數(shù)列求和公式進行計算,即可證出.【詳解】(1)由函數(shù),在數(shù)列中,若,得:,上式兩邊都倒過來,可得:==﹣2,∴﹣1=﹣2﹣1=﹣1=1(﹣1).∵﹣1=1.∴數(shù)列是以1為首項,1為公比的等比數(shù)列.(2)由(1),可知:=1n,∴an=,n∈N*.∵當n∈N*時,不等式<成立.∴Sn=a1+a2+…+an===﹣?<.∴.【點睛】本題主要考查數(shù)列與函數(shù)的綜合應(yīng)用,根據(jù)條件推出數(shù)列的遞推公式,由遞推公式推出通項公式與放縮法的應(yīng)用是解決本題的兩個關(guān)鍵點,屬于中檔題.18、(1),;(2)【解析】

(1)根據(jù)最高頂點間的距離求出周期得,根據(jù)對稱軸求出;(2)根據(jù)題意求出,結(jié)合誘導(dǎo)公式及和差公式求解.【詳解】解:(1)因的圖象上相鄰兩個最高點的距離為,∴的最小正周期,從而.又因的圖象關(guān)于直線對稱,∴.∵,∴,此時.(2)由(1)得,∴,由得,∴,∴.【點睛】此題考查根據(jù)三角函數(shù)圖像性質(zhì)求參數(shù)的值,結(jié)合誘導(dǎo)公式和差公式處理三角求值的問題.19、(1)(–5,–4)(2)【解析】

(1)設(shè)點,根據(jù)題意寫出關(guān)于的方程組,得到點坐標;(2)由兩點間距離公式求出,再由兩點得到直線的方程,利用點到直線的距離公式,求出點到的距離,由三角形面積公式得到答案.【詳解】(1)由題意,設(shè)點,根據(jù)AC邊的中點M在y軸上,BC的中點N在x軸上,根據(jù)中點公式,可得,解得,所以點的坐標是.(2)因為,得.,所以直線的方程為,即,故點到直線的距離,所以的面積.【點睛】本題考查中點坐標公式,兩點間距離公式,點到直線的距離公式,屬于簡單題.20、(1)分鐘.(2)58分鐘;(3)【解析】

(1)根據(jù)中位數(shù)將頻率二等分可直接求得結(jié)果;(2)每組數(shù)據(jù)中間值與對應(yīng)小矩形的面積乘積的總和即為平均數(shù);(3)采用列舉法分別列出所有基本事件和符合題意的基本事件,根據(jù)古典概型概率公式求得結(jié)果.【詳解】(1)設(shè)中位數(shù)為,則解得:(分鐘)這名手機使用者中使用時間的中位數(shù)是分鐘(2)平均每天使用手機時間為:(分鐘)即手機使用者平均每天使用手機時間為分鐘(3)設(shè)在內(nèi)抽取的兩人分別為,在內(nèi)抽取的三人分別為,則從五人中選出兩人共有以下種情況:兩名組長分別選自和的共有以下種情況:所求概率【點睛】本題考查根據(jù)頻率分布直方圖計算平均數(shù)和中位數(shù)、古典概型概率問題的求解;關(guān)鍵是能夠明確平均數(shù)和中位數(shù)的估算原理,從而計算得到結(jié)果;解決古典概型的常用方法為列舉法,屬于常考題型.21、(1)24;(2)8【解析】

(1)利用已知條件,利用正弦定理求得AD的長.(2)在△ADC中由余弦定理可求得CD,答案可得.【詳解】(1)在△ABD中,由已知得∠A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論