版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆遼寧省瓦房店市第三高級中學(xué)數(shù)學(xué)高一下期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將函數(shù)(其中)的圖象向右平移個單位,若所得圖象與原圖象重合,則不可能等于()A.0 B. C. D.2.已知集合,則().A. B. C. D.3.在中,角、、所對的邊長分別為,,,,,,則的面積為()A. B. C. D.94.如圖,這是某校高一年級一名學(xué)生七次月考數(shù)學(xué)成績(滿分100分)的莖葉圖去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別是()A.87,9.6 B.85,9.6 C.87,5,6 D.85,5.65.已知直線l的方程為2x+3y=5,點P(a,b)在l上位于第一象限內(nèi)的點,則的最小值為()A. B. C. D.6.等差數(shù)列中,若,則=()A.11 B.7 C.3 D.27.在中,內(nèi)角,,的對邊分別為,,.若,則的形狀是A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不確定8.在,內(nèi)角所對的邊分別為,且,則()A. B. C. D.19.圓與直線的位置關(guān)系為()A.相離 B.相切C.相交 D.以上都有可能10.設(shè)a>0,b>0,若是和的等比中項,則的最小值為()A.6 B. C.8 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.若點,是圓C:上不同的兩點,且,則的值為______.12.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號的產(chǎn)品,產(chǎn)量分別為200,400,300,100件,為檢驗產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進行檢驗,則應(yīng)從丙種型號的產(chǎn)品中抽取________件.13.對于任意實數(shù)x,不等式恒成立,則實數(shù)a的取值范圍是______14.已知、的取值如表所示:01342.24.34.86.7從散點圖分析,與線性相關(guān),且,則______.15.設(shè)變量x、y滿足約束條件,則目標(biāo)函數(shù)的最大值為_______.16.據(jù)監(jiān)測,在海濱某城市附近的海面有一臺風(fēng),臺風(fēng)中心位于城市的南偏東30°方向,距離城市的海面處,并以的速度向北偏西60°方向移動(如圖示).如果臺風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺風(fēng)移動的方向與速度不變,那么該城市受臺風(fēng)侵襲的時長為_______小時.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,為上的點,為上的點,且.(1)求的長;(2)若,求的余弦值.18.從甲、乙、丙、丁四個人中選兩名代表,求:(1)甲被選中的概率;(2)丁沒被選中的概率.19.已知直線和.(1)若,求實數(shù)的值;(2)若,求實數(shù)的值.20.已知,,與的夾角為,,,當(dāng)實數(shù)為何值時,(1);(2).21.如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD,E為側(cè)棱PD的中點.(1)求證:PB//平面EAC;(2)求證:AE⊥平面PCD;(3)當(dāng)為何值時,PB⊥AC?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由題意,所以,因此,從而,可知不可能等于.2、B【解析】
求解一元二次不等式的解集,化簡集合的表示,最后運用集合交集的定義,結(jié)合數(shù)軸求出.【詳解】因為,所以,故本題選B.【點睛】本題考查了一元二次不等式的解法,考查了集合交集的運算,正確求解一元二次不等式的解集、運用數(shù)軸是解題的關(guān)鍵.3、A【解析】
,利用正弦定理,和差公式化簡可得,再利用三角形面積計算公式即可得出.【詳解】化為:的面積故選:【點睛】本題考查正弦定理與兩角和余弦公式化簡求值,屬于基礎(chǔ)題.4、D【解析】
去掉一個最高分和一個最低分后,所剩數(shù)據(jù)為82,84,84,86,89,由此能求出所剩數(shù)據(jù)的平均數(shù)和方差.【詳解】平均數(shù),方差,選D.【點睛】本題考查所剩數(shù)據(jù)的平均數(shù)和方差的求法,考查莖葉圖、平均數(shù)、方差的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.5、C【解析】
由題意可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),將所求式子化為b的關(guān)系式,由基本不等式可得所求最小值.【詳解】直線l的方程為2x+3y=5,點P(a,b)在l上位于第一象限內(nèi)的點,可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),則[(11﹣6b)+(9+6b)]()(7),當(dāng)且僅當(dāng)時,即b,a,上式取得最小值,故選:C.【點評】本題考查基本不等式的運用:求最值,考查變形能力和化簡運算能力,屬于中檔題.6、A【解析】
根據(jù)和已知條件即可得到.【詳解】等差數(shù)列中,故選A.【點睛】本題考查了等差數(shù)列的基本性質(zhì),屬于基礎(chǔ)題.7、C【解析】
由正弦定理可推得,再由余弦定理計算最大邊的余弦值即可判斷三角形形狀.【詳解】因為,所以,設(shè),,,則角為的最大角,由余弦定理可得,即,故是鈍角三角形.【點睛】本題考查用正弦定理和余弦定理解三角形,屬于基礎(chǔ)題.8、C【解析】
直接利用余弦定理求解.【詳解】由余弦定理得.故選C【點睛】本題主要考查余弦定理解三角形,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.9、C【解析】
由直線方程可確定其恒過的定點,由點與圓的位置關(guān)系的判定方法知該定點在圓內(nèi),則可知直線與圓相交.【詳解】由得:直線恒過點在圓內(nèi)部直線與圓相交故選:【點睛】本題考查直線與圓位置關(guān)系的判定,涉及到直線恒過定點的求解、點與圓的位置關(guān)系的判定,屬于常考題型.10、D【解析】
試題分析:由題意a>0,b>0,且是和的等比中項,即,則,當(dāng)且僅當(dāng)時,即時取等號.考點:重要不等式,等比中項二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,再結(jié)合坐標(biāo)運算即可得解.【詳解】解:因為點,是圓C:上不同的兩點,則,,又所以,即,故答案為:.【點睛】本題考查了向量模的運算,重點考查了運算能力,屬基礎(chǔ)題.12、1【解析】應(yīng)從丙種型號的產(chǎn)品中抽取件,故答案為1.點睛:在分層抽樣的過程中,為了保證每個個體被抽到的可能性是相同的,這就要求各層所抽取的個體數(shù)與該層所包含的個體數(shù)之比等于樣本容量與總體的個體數(shù)之比,即ni∶Ni=n∶N.13、【解析】
對a分類討論,利用判別式,即可得到結(jié)論.【詳解】(1)a﹣2=0,即a=2時,﹣4<0,恒成立;(2)a﹣2≠0時,,解得﹣2<a<2,∴﹣2<a≤2故答案為:.【點睛】對于二次函數(shù)的研究一般從以幾個方面研究:一是,開口;二是,對稱軸,主要討論對稱軸與區(qū)間的位置關(guān)系;三是,判別式,決定于x軸的交點個數(shù);四是,區(qū)間端點值.14、【解析】
根據(jù)數(shù)據(jù)表求解出,代入回歸直線,求得的值.【詳解】根據(jù)表中數(shù)據(jù)得:,又由回歸方程知回歸方程的斜率為截距本題正確結(jié)果:【點睛】本題考查利用回歸直線求實際數(shù)據(jù),關(guān)鍵在于明確回歸直線恒過,從而可構(gòu)造出關(guān)于的方程.15、3【解析】
可通過限定條件作出對應(yīng)的平面區(qū)域圖,再根據(jù)目標(biāo)函數(shù)特點進行求值【詳解】可行域如圖所示;則可化為,由圖象可知,當(dāng)過點時,有最大值,則其最大值為:故答案為:3.【點睛】線性規(guī)劃問題關(guān)鍵是能正確畫出可行域,目標(biāo)函數(shù)可由幾何意義確定具體含義(最值或斜率)16、1【解析】
設(shè)臺風(fēng)移動M處的時間為th,則|PM|=20t,利用余弦定理求得AM,而該城市受臺風(fēng)侵襲等價于AM≤60,解此不等式可得.【詳解】如圖:設(shè)臺風(fēng)移動M處的時間為th,則|PM|=20t,依題意可得,在三角形APM中,由余弦定理可得:依題意該城市受臺風(fēng)侵襲等價于AM≤60,即AM2≤602,化簡得:,所以該城市受臺風(fēng)侵襲的時間為6﹣1=1小時.故答案為:1.【點睛】本題考查了余弦定理的應(yīng)用,考查了數(shù)學(xué)運算能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:本題是正弦定理、余弦定理的應(yīng)用.(1)中,在中可得的大小,運用余弦定理得到關(guān)于的一元二次方程,通過解方程可得的值;(2)中先在中由正弦定理得,并根據(jù)題意判斷出為鈍角,根據(jù)求出.試題解析:(1)由題意可得,在中,由余弦定理得,所以,整理得,解得:.故的長為.(2)在中,由正弦定理得,即所以,所以.因為點在邊上,所以,而,所以只能為鈍角,所以,所以.18、(1);(2).【解析】
(1)先確定從甲、乙、丙、丁四個人中選兩名代表總事件數(shù),再確定甲被選中的事件數(shù),最后根據(jù)古典概型概率公式求概率(2)先確定從甲、乙、丙、丁四個人中選兩名代表總事件數(shù),再確定丁沒被選中的事件數(shù),最后根據(jù)古典概型概率公式求概率.【詳解】(1)從甲、乙、丙、丁四個人中選兩名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6種基本事件,其中甲被選中包括甲乙,甲丙,甲丁三種基本事件,所以甲被選中的概率為.(2)丁沒被選中包括甲乙,甲丙,乙丙三種基本事件,所以丁沒被選中的概率為.點睛:古典概型中基本事件數(shù)的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復(fù)雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.19、(1);(2).【解析】
(1)借助兩直線垂直的充要條件建立方程求解;(2)借助兩直線平行充要條件建立方程求解.【詳解】(1)若,則.(2)若,則或2.經(jīng)檢驗,時,與重合,時,符合條件,∴.【點晴】解析幾何是運用代數(shù)的方法和知識解決幾何問題一門學(xué)科,是數(shù)形結(jié)合的典范,也是高中數(shù)學(xué)的重要內(nèi)容和高考的熱點內(nèi)容.解答本題時充分運用和借助題設(shè)條件中的垂直和平行條件,建立了含參數(shù)的直線的方程,然后再運用已知條件進行分析求解,從而將問題進行轉(zhuǎn)化和化歸,進而使問題獲解.如本題的第一問中求參數(shù)的值時,是直接運用垂直的充要條件建立方程,這是方程思想的運用;再如第二問中求參數(shù)的值時也是運用了兩直線平行的條件,但要注意的是這個條件不是兩直線平行的充要條件,所以一定代回進行檢驗,這也是學(xué)生經(jīng)常會出現(xiàn)錯誤的地方.20、(1);(2).【解析】試題分析:(1)利用平面向量共線的判定條件進行求解;(2),利用平面向量的數(shù)量積為0進行求解.試題解析:(1)若,則存在實數(shù),使,即,則,解得得;(2)若,則,解得.考點:1.平面向量共線的判定;2.平面向量垂直的判定.21、(1)見解析;(2)見解析【解析】
1)連結(jié)BD交AC于O,連結(jié)EO,由EO//PB可證PB//平面EA.(2)由側(cè)面PAD⊥底面ABCD,,可證,又PAD是正三角形,所以AE⊥平面PCD.(3)設(shè)N為AD中點,連接PN,則,可證PN⊥底面ABCD,所以要使PB⊥AC,只需NB⊥AC,由相似三角形可求得比值.【詳解】(1)連結(jié)BD交AC于O,連結(jié)EO,因為O,E分別為BD.PD的中點,所以EO//PB,,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025車輛保管合同書范文
- 2025保修工程合同范本
- 2025學(xué)校食堂承包合同書
- 2025關(guān)于試用期解除合同及案例
- 2025年度軍事電子對抗保密技術(shù)合同3篇
- 2025年度新能源充電設(shè)施建設(shè)公司合作協(xié)議書3篇
- 二零二五年度農(nóng)村房屋租賃合同(含農(nóng)業(yè)產(chǎn)業(yè)升級)
- 二零二五年度體育場館租賃合同及賽事運營協(xié)議3篇
- 2025年度農(nóng)村個人地基使用權(quán)轉(zhuǎn)讓及農(nóng)業(yè)現(xiàn)代化設(shè)施配套協(xié)議書3篇
- 2025年度教育信息化項目經(jīng)理合作協(xié)議2篇
- 車輛保養(yǎng)維修登記表
- 醫(yī)藥領(lǐng)域知識產(chǎn)權(quán)
- 杭州市公共服務(wù)設(shè)施配套標(biāo)準(zhǔn)及規(guī)劃導(dǎo)則
- 機械工程學(xué)報標(biāo)準(zhǔn)格式
- 濕法脫硫用水水質(zhì)要求
- 城管局個人工作總結(jié)
- 鉑銠合金漏板.
- (完整版)建筑力學(xué)(習(xí)題答案)
- 少年宮籃球活動教案
- 國有建設(shè)企業(yè)《大宗材料及設(shè)備采購招標(biāo)管理辦法》
- 民間秘術(shù)絕招大全
評論
0/150
提交評論