版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
貴州省遵義市鳳岡縣二中2024年高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知數(shù)列的前項(xiàng)和,那么()A.此數(shù)列一定是等差數(shù)列 B.此數(shù)列一定是等比數(shù)列C.此數(shù)列不是等差數(shù)列,就是等比數(shù)列 D.以上說法都不正確2.已知函數(shù),若,則()A. B. C. D.3.已知直三棱柱的所有棱長都相等,為的中點(diǎn),則與所成角的余弦值為()A. B. C. D.4.=()A. B. C. D.5.己知的周長為,內(nèi)切圓的半徑為,,則的值為()A. B. C. D.6.已知兩點(diǎn),,則()A. B. C. D.7.已知函數(shù),若存在實(shí)數(shù),滿足,則實(shí)數(shù)的取值范圍為(
)A. B.C. D.8.已知球的直徑SC=4,A,B是該球球面上的兩點(diǎn),AB=1.∠ASC=∠BSC=45°則棱錐S—ABC的體積為()A. B. C. D.9.若實(shí)數(shù)滿足不等式組,則的最小值是()A. B.0 C.1 D.210.某賽季中,甲?乙兩名籃球隊(duì)員各場比賽的得分莖葉圖如圖所示,若甲得分的眾數(shù)為15,乙得分的中位數(shù)為13,則()A.15 B.16 C.17 D.18二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,且a1+b1=512.設(shè)變量x、y滿足約束條件,則目標(biāo)函數(shù)的最大值為_______.13.函數(shù)的圖象過定點(diǎn)______.14.已知是等比數(shù)列,且,,那么________________.15.若直線的傾斜角為,則______.16.已知數(shù)列,若對任意正整數(shù)都有,則正整數(shù)______;三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C的對邊分別為a,b,c,且,,求△ABC的面積的最大值.18.定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長,則稱為三角形”數(shù)列對于“三角形”數(shù)列,如果函數(shù)使得仍為一個(gè)三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”.(1)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若,是數(shù)列的保三角形函數(shù)”,求的取值范圍;(2)已知數(shù)列的首項(xiàng)為2019,是數(shù)列的前項(xiàng)和,且滿足,證明是“三角形”數(shù)列;(3)求證:函數(shù),是數(shù)列1,,的“保三角形函數(shù)”的充要條件是,.19.如圖,四棱錐P-ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是BC的中點(diǎn),M(1)求證:AE⊥平面PAD;(2)若AB=AP=2,求三棱錐P-ACM的體積.20.設(shè)函數(shù),其中,.(1)設(shè),若函數(shù)的圖象的一條對稱軸為直線,求的值;(2)若將的圖象向左平移個(gè)單位,或者向右平移個(gè)單位得到的圖象都過坐標(biāo)原點(diǎn),求所有滿足條件的和的值;(3)設(shè),,已知函數(shù)在區(qū)間上的所有零點(diǎn)依次為,且,,求的值.21.已知α為銳角,且tanα=(I)求tanα+(II)求5sin
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
利用即可求得:,當(dāng)時(shí),或,對賦值2,3,選擇不同的遞推關(guān)系可得數(shù)列:1,3,-3,…,問題得解.【詳解】因?yàn)?,?dāng)時(shí),,解得,當(dāng)時(shí),,整理有,,所以或若時(shí),滿足,時(shí),滿足,可得數(shù)列:1,3,-3,…此數(shù)列既不是等差數(shù)列,也不是等比數(shù)列故選D【點(diǎn)睛】本題主要考查利用與的關(guān)系求,以及等差等比數(shù)列的判定.2、D【解析】
令,根據(jù)奇偶性定義可判斷出為奇函數(shù),從而可求得,進(jìn)而求得結(jié)果.【詳解】令為奇函數(shù)又即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)的奇偶性求解函數(shù)值的問題,關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式得到奇函數(shù),利用奇函數(shù)的定義可求得對應(yīng)位置的函數(shù)值.3、D【解析】
取的中點(diǎn),連接,則,所以異面直線與所成角就是直線與所成角,在中,利用余弦定理,即可求解.【詳解】由題意,取的中點(diǎn),連接,則,所以異面直線與所成角就是直線與所成角,設(shè)正三棱柱的各棱長為,則,設(shè)直線與所成角為,在中,由余弦定理可得,即異面直線與所成角的余弦值為,故選D.【點(diǎn)睛】本題主要考查了異面直線所成角的求解,其中解答中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、A【解析】
試題分析:由誘導(dǎo)公式,故選A.考點(diǎn):誘導(dǎo)公式.5、C【解析】
根據(jù)的周長為,內(nèi)切圓的半徑為,求得,再利用正弦定理,得到,然后代入余弦定理,化簡得到求解.【詳解】因?yàn)榈闹荛L為,內(nèi)切圓的半徑為,所以,又因?yàn)?,所?由余弦定理得:,,所以,所以,即,因?yàn)锳為內(nèi)角,所以,所以.故選:C【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.6、C【解析】
直接利用兩點(diǎn)間距離公式求解即可.【詳解】因?yàn)閮牲c(diǎn),,則,故選.【點(diǎn)睛】本題主要考查向量的模,兩點(diǎn)間距離公式的應(yīng)用.7、A【解析】
根據(jù)題意可知方程有解即可,代入解析式化簡后,利用基本不等式得出,再利用分類討論思想即可求出實(shí)數(shù)的取值范圍.【詳解】由題意知,方程有解,則,化簡得,即,因?yàn)?,所以,?dāng)時(shí),化簡得,解得;當(dāng)時(shí),化簡得,解得,綜上所述的取值范圍為.故答案為:A【點(diǎn)睛】本題主要考查了函數(shù)的基本性質(zhì)的應(yīng)用,以及利用基本不等式求最值的應(yīng)用,其中解答中利用題設(shè)條件化簡,合理利用基本不等式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.8、C【解析】如圖所示,由題意知,在棱錐SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中點(diǎn)D,易證SC垂直于面ABD,因此棱錐SABC的體積為兩個(gè)棱錐SABD和CABD的體積和,所以棱錐SABC的體積V=SC·S△ADB=×4×=.9、A【解析】
畫出不等式組的可行域,再根據(jù)線性規(guī)劃的方法,結(jié)合的圖像與的關(guān)系判定最小值即可.【詳解】畫出可行域,又求最小值時(shí),故的圖形與可行域有交點(diǎn),且往上方平移到最高點(diǎn)處.易得此時(shí)在處取得最值.故選:A【點(diǎn)睛】本題主要考查了線性規(guī)劃與絕對值函數(shù)的綜合運(yùn)用,需要根據(jù)題意畫圖,根據(jù)函數(shù)的圖形性質(zhì)分析.屬于中檔題.10、A【解析】
由圖可得出,然后可算出答案【詳解】因?yàn)榧椎梅值谋姅?shù)為15,所以由莖葉圖可知乙得分?jǐn)?shù)據(jù)有7個(gè),乙得分的中位數(shù)為13,所以所以故選:A【點(diǎn)睛】本題考查的是莖葉圖的知識,較簡單二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
根據(jù)等差數(shù)列的通項(xiàng)公式把a(bǔ)bn轉(zhuǎn)化到a1+(bn-1)【詳解】S=[=[=na1=4n+n(n-1)故答案為:12【點(diǎn)睛】本題主要考查等差數(shù)列通項(xiàng)公式和前n項(xiàng)和的應(yīng)用,利用分組求和法是解決本題的關(guān)鍵.12、3【解析】
可通過限定條件作出對應(yīng)的平面區(qū)域圖,再根據(jù)目標(biāo)函數(shù)特點(diǎn)進(jìn)行求值【詳解】可行域如圖所示;則可化為,由圖象可知,當(dāng)過點(diǎn)時(shí),有最大值,則其最大值為:故答案為:3.【點(diǎn)睛】線性規(guī)劃問題關(guān)鍵是能正確畫出可行域,目標(biāo)函數(shù)可由幾何意義確定具體含義(最值或斜率)13、【解析】
令真數(shù)為,求出的值,代入函數(shù)解析式可得出定點(diǎn)坐標(biāo).【詳解】令,得,當(dāng)時(shí),.因此,函數(shù)的圖象過定點(diǎn).故答案為:.【點(diǎn)睛】本題考查對數(shù)型函數(shù)圖象過定點(diǎn)問題,一般利用真數(shù)為來求得,考查計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
先根據(jù)等比數(shù)列性質(zhì)化簡方程,再根據(jù)平方性質(zhì)得結(jié)果.【詳解】∵是等比數(shù)列,且,,∴,即,則.【點(diǎn)睛】本題考查等比數(shù)列性質(zhì),考查基本求解能力.15、【解析】
首先利用直線方程求出直線斜率,通過斜率求出傾斜角.【詳解】由題知直線方程為,所以直線的斜率,又因?yàn)閮A斜角,所以傾斜角.故答案為:.【點(diǎn)睛】本題主要考查了直線傾斜角與直線斜率的關(guān)系,屬于基礎(chǔ)題.16、9【解析】
分析數(shù)列的單調(diào)性,以及數(shù)列各項(xiàng)的取值正負(fù),得到數(shù)列中的最大項(xiàng),由此即可求解出的值.【詳解】因?yàn)椋詴r(shí),,時(shí),,又因?yàn)樵谏线f增,在也是遞增的,所以,又因?yàn)閷θ我庹麛?shù)都有,所以.故答案為:.【點(diǎn)睛】本題考查數(shù)列的單調(diào)性以及數(shù)列中項(xiàng)的正負(fù)判斷,難度一般.處理數(shù)列單調(diào)性或者最值的問題時(shí),可以采取函數(shù)的思想來解決問題,但是要注意到數(shù)列對應(yīng)的函數(shù)的定義域?yàn)?三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)利用二倍角公式、輔助角公式進(jìn)行化簡,,然后根據(jù)單調(diào)區(qū)間對應(yīng)的的公式求解單調(diào)區(qū)間;(2)根據(jù)計(jì)算出的值,再利用余弦定理計(jì)算出的最大值則可求面積的最大值,注意不等式取等號條件.【詳解】解:(1)∴函數(shù)的單調(diào)遞增區(qū)間為,(2)由(1)知得(舍)或∴有余弦定理得即∴當(dāng)且僅當(dāng)時(shí)取等號∴【點(diǎn)睛】(1)輔助角公式:;(2)三角形中,已知一邊及其對應(yīng)角時(shí),若要求解面積最大值,在未給定三角形形狀時(shí),可選用余弦定理求解更方便,若是給定三角形形狀,這時(shí)選用正弦定理并需要對角的范圍作出判斷.18、(1);(2)見解析;(3)見解析.【解析】
(1)先由條件得是三角形數(shù)列,再利用,是數(shù)列的“保三角形函數(shù)”,得到,解得的取值范圍;(2)先利用條件求出數(shù)列的通項(xiàng)公式,再證明其滿足“三角形”數(shù)列的定義即可;(3)根據(jù)函數(shù),,是數(shù)列1,,的“保三角形函數(shù)”,可以得到①1,,是三角形數(shù)列,所以,即,②數(shù)列中的各項(xiàng)必須在定義域內(nèi),即,③,,是三角形數(shù)列;結(jié)論為在利用,是單調(diào)遞減函數(shù),就可求出對應(yīng)的范圍,即可證明.【詳解】(1)解:顯然,對任意正整數(shù)都成立,即是三角形數(shù)列,因?yàn)?,顯然有,由得,解得,所以當(dāng)時(shí),是數(shù)列的“保三角形函數(shù)”;(2)證:由,當(dāng)時(shí),,∴,∴,當(dāng)時(shí),即,解得,∴,∴數(shù)列是以2019為首項(xiàng),以為公比的等比數(shù)列,∴,顯然,因?yàn)椋允恰叭切巍睌?shù)列;(3)證:函數(shù),是數(shù)列1,,的“保三角形函數(shù)”,必須滿足三個(gè)條件:①1,,是三角形數(shù)列,所以,即;②數(shù)列中的各項(xiàng)必須在定義域內(nèi),即;③,,是三角形數(shù)列,由于,是單調(diào)遞減函數(shù),所以,解得,所以函數(shù),是數(shù)列1,,的“保三角形函數(shù)”的充要條件是,.【點(diǎn)睛】本題主要考查數(shù)列與三角函數(shù)的綜合,考查在新定義下數(shù)列與三角函數(shù)的結(jié)合,考查等比數(shù)列的證明,等比數(shù)列的通項(xiàng)公式,考查轉(zhuǎn)化思想,屬于難題.19、(1)見證明;(2)3【解析】
(1)本題首先可以通過菱形的相關(guān)性質(zhì)證明出AE⊥AD,然后通過PA⊥菱形ABCD所在的平面證明出PA⊥AE,最后通過線面垂直的相關(guān)性質(zhì)即可得出結(jié)果;(2)可以將三角形APM當(dāng)成三棱錐P-ACM的底面,將AE當(dāng)成三棱錐P-ACM的高,最后通過三棱錐的體積計(jì)算公式即可得出結(jié)果.【詳解】(1)證明:連接AC,因?yàn)榈酌鍭BCD為菱形,∠ABC=60°,所以因?yàn)镋是BC的中點(diǎn),所以AE⊥BC,因?yàn)锳D//BC,所以AE⊥AD,因?yàn)镻A⊥平面ABCD,AE?平面ABCD,所以PA⊥AE,又因?yàn)镻A∩AD=A,所以AE⊥平面PAD.(2)AB=AP=2,則AD=2,AE=3所以Vp【點(diǎn)睛】本題考查立體幾何的相關(guān)性質(zhì),主要考查線面垂直的證明以及三棱錐體積的求法,可以通過證明平面外一條直線垂直平面內(nèi)的兩條相交直線來證明線面垂直,考查推理能力,是中檔題.20、(1);(2),;(3)【解析】
(1)根據(jù)對稱軸對應(yīng)三角函數(shù)最值以及計(jì)算的值;(2)根據(jù)條件列出等式求解和的值;(3)根據(jù)圖象利用對稱性分析待求式子的特點(diǎn),然后求值.【詳解】(1),因?yàn)槭且粭l對稱軸,對應(yīng)最值;又因?yàn)?,所以,所以,則;(2)由條件知:,可得,則,又因?yàn)?,所以,則,故有:,當(dāng)為奇數(shù)時(shí),令,所以,當(dāng)為偶數(shù)時(shí),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 無人超市設(shè)備采購安裝合同
- 初中英語教學(xué)的理論依據(jù)
- 業(yè)主入住提供服務(wù)合同模板
- 人才選拔合同范例
- 新能源汽車充電站建設(shè)合同
- 單位承擔(dān)房屋租賃合同范例
- 季度付租金合同范例
- 工業(yè)機(jī)器人應(yīng)用開發(fā)合同
- 商品房物業(yè)收費(fèi)合同模板
- 制造業(yè)生產(chǎn)過程自動(dòng)化控制系統(tǒng)開發(fā)合同
- (高清版)DZT 0341-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 建筑用石料類
- 幼兒園教師教育教學(xué)能力
- 《壺口瀑布》課件
- 管理者與員工關(guān)系培訓(xùn)
- 家長社群運(yùn)營與家校溝通策略
- 十四五生態(tài)環(huán)境大數(shù)據(jù)應(yīng)用
- 護(hù)理液體掛錯(cuò)不良事件
- 綠色供應(yīng)鏈與環(huán)保采購
- 如何撰寫政策建議報(bào)告
- 完全學(xué)分制下高校學(xué)生團(tuán)組織建設(shè)的思考
- 2023-2024學(xué)年河北省唐山市十縣高二年級上冊期中考試數(shù)學(xué)模擬試題(含答案)
評論
0/150
提交評論