湖南長沙市湖南師大附中集團2024年中考數(shù)學押題試卷含解析_第1頁
湖南長沙市湖南師大附中集團2024年中考數(shù)學押題試卷含解析_第2頁
湖南長沙市湖南師大附中集團2024年中考數(shù)學押題試卷含解析_第3頁
湖南長沙市湖南師大附中集團2024年中考數(shù)學押題試卷含解析_第4頁
湖南長沙市湖南師大附中集團2024年中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南長沙市湖南師大附中集團2024年中考數(shù)學押題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列因式分解正確的是()A.x2+9=(x+3)2 B.a(chǎn)2+2a+4=(a+2)2C.a(chǎn)3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)2.如圖,在平面直角坐標系中,點A在第一象限,點P在x軸上,若以P,O,A為頂點的三角形是等腰三角形,則滿足條件的點P共有()A.2個 B.3個 C.4個 D.5個3.設點和是反比例函數(shù)圖象上的兩個點,當<<時,<,則一次函數(shù)的圖象不經(jīng)過的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如圖的幾何體是由五個小正方體組合而成的,則這個幾何體的左視圖是()A. B.C. D.5.在0,-2,5,,-0.3中,負數(shù)的個數(shù)是().A.1 B.2 C.3 D.46.如圖,點A,B在反比例函數(shù)y=1x(x>0)的圖象上,點C,D在反比例函數(shù)y=A.4 B.3 C.2 D.37.下列說法中正確的是()A.檢測一批燈泡的使用壽命適宜用普查.B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就一定有5次正面朝上.C.“367人中有兩人是同月同日生”為必然事件.D.“多邊形內角和與外角和相等”是不可能事件.8.下表是某校合唱團成員的年齡分布,對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)9.如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE的交點,CD=4,則線段DF的長度為()A. B.4 C. D.10.對于點A(x1,y1),B(x2,y2),定義一種運算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四點C,D,E,F(xiàn),滿足,則C,D,E,F(xiàn)四點【】A.在同一條直線上B.在同一條拋物線上C.在同一反比例函數(shù)圖象上D.是同一個正方形的四個頂點二、填空題(本大題共6個小題,每小題3分,共18分)11.已知直線m∥n,將一塊含有30°角的直角三角板ABC按如圖方式放置,其中A、B兩點分別落在直線m、n上,若∠1=20°,則∠2=_____度.12.對于任意非零實數(shù)a、b,定義運算“”,使下列式子成立:,,,,…,則ab=.13.點(a-1,y1)、(a+1,y2)在反比例函數(shù)y=(k>0)的圖象上,若y1<y2,則a的范圍是________.14.在如圖所示的正方形方格紙中,每個小的四邊形都是相同的正方形,A、B、C、D都是格點,AB與CD相交于M,則AM:BM=__.15.如圖,李明從A點出發(fā)沿直線前進5米到達B點后向左旋轉的角度為α,再沿直線前進5米,到達點C后,又向左旋轉α角度,照這樣走下去,第一次回到出發(fā)地點時,他共走了45米,則每次旋轉的角度α為_____.16.若點M(1,m)和點N(4,n)在直線y=﹣x+b上,則m___n(填>、<或=)三、解答題(共8題,共72分)17.(8分)解不等式組:并把解集在數(shù)軸上表示出來.18.(8分)平面直角坐標系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點A、B(點A在點B左側),與y軸交于點C,頂點為D,對稱軸為直線l,過點C作直線l的垂線,垂足為點E,聯(lián)結DC、BC.(1)當點C(0,3)時,①求這條拋物線的表達式和頂點坐標;②求證:∠DCE=∠BCE;(2)當CB平分∠DCO時,求m的值.19.(8分)已知,,,斜邊,將繞點順時針旋轉,如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點,同時從點出發(fā),在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設運動時間為秒,的面積為,求當為何值時取得最大值?最大值為多少?20.(8分)已知拋物線y=ax2+c(a≠0).(1)若拋物線與x軸交于點B(4,0),且過點P(1,–3),求該拋物線的解析式;(2)若a>0,c=0,OA、OB是過拋物線頂點的兩條互相垂直的直線,與拋物線分別交于A、B兩點,求證:直線AB恒經(jīng)過定點(0,);(3)若a>0,c<0,拋物線與x軸交于A,B兩點(A在B左邊),頂點為C,點P在拋物線上且位于第四象限.直線PA、PB與y軸分別交于M、N兩點.當點P運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.21.(8分)定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.(1)設三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數(shù)學依據(jù)是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線,求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點E為邊CD的中點,連結AE并延長交BC的延長線于點F,連結AC.求△ACF中邊AF的中垂距.22.(10分)如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.(1)求證:AE=BF;(2)連接GB,EF,求證:GB∥EF;(3)若AE=1,EB=2,求DG的長.23.(12分)如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知點O,A,B均為網(wǎng)格線的交點.在給定的網(wǎng)格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應點分別為).畫出線段;將線段繞點逆時針旋轉90°得到線段.畫出線段;以為頂點的四邊形的面積是個平方單位.24.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積最大,若存在,求出點F的坐標和最大值;若不存在,請說明理由;(3)平行于DE的一條動直線l與直線BC相較于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求P點的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

試題分析:A、B無法進行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點:因式分解【詳解】請在此輸入詳解!2、C【解析】

分為三種情況:①AP=OP,②AP=OA,③OA=OP,分別畫出即可.【詳解】如圖,分OP=AP(1點),OA=AP(1點),OA=OP(2點)三種情況討論.∴以P,O,A為頂點的三角形是等腰三角形,則滿足條件的點P共有4個.故選C.【點睛】本題考查了等腰三角形的判定和坐標與圖形的性質,主要考查學生的動手操作能力和理解能力,注意不要漏解.3、A【解析】∵點和是反比例函數(shù)圖象上的兩個點,當<<1時,<,即y隨x增大而增大,∴根據(jù)反比例函數(shù)圖象與系數(shù)的關系:當時函數(shù)圖象的每一支上,y隨x的增大而減?。划敃r,函數(shù)圖象的每一支上,y隨x的增大而增大.故k<1.∴根據(jù)一次函數(shù)圖象與系數(shù)的關系:一次函數(shù)的圖象有四種情況:①當,時,函數(shù)的圖象經(jīng)過第一、二、三象限;②當,時,函數(shù)的圖象經(jīng)過第一、三、四象限;③當,時,函數(shù)的圖象經(jīng)過第一、二、四象限;④當,時,函數(shù)的圖象經(jīng)過第二、三、四象限.因此,一次函數(shù)的,,故它的圖象經(jīng)過第二、三、四象限,不經(jīng)過第一象限.故選A.4、D【解析】

找到從左面看到的圖形即可.【詳解】從左面上看是D項的圖形.故選D.【點睛】本題考查三視圖的知識,左視圖是從物體左面看到的視圖.5、B【解析】

根據(jù)負數(shù)的定義判斷即可【詳解】解:根據(jù)負數(shù)的定義可知,這一組數(shù)中,負數(shù)有兩個,即-2和-0.1.故選B.6、B【解析】

首先根據(jù)A,B兩點的橫坐標,求出A,B兩點的坐標,進而根據(jù)AC//BD//y軸,及反比例函數(shù)圖像上的點的坐標特點得出C,D兩點的坐標,從而得出AC,BD的長,根據(jù)三角形的面積公式表示出S△OAC,S△ABD的面積,再根據(jù)△OAC與△ABD的面積之和為32【詳解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y軸,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC與△ABD的面積之和為32∴12(k-1)×1+12(k2-1故答案為B.【點睛】:此題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標特征,熟練掌握反比例函數(shù)k的幾何意義是解本題的關鍵.7、C【解析】【分析】根據(jù)相關的定義(調查方式,概率,可能事件,必然事件)進行分析即可.【詳解】A.檢測一批燈泡的使用壽命不適宜用普查,因為有破壞性;B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就可能有5次正面朝上,因為這是隨機事件;C.“367人中有兩人是同月同日生”為必然事件.因為一年只有365天或366天,所以367人中至少有兩個日子相同;D.“多邊形內角和與外角和相等”是可能事件.如四邊形內角和和外角和相等.故正確選項為:C【點睛】本題考核知識點:對(調查方式,概率,可能事件,必然事件)理解.解題關鍵:理解相關概念,合理運用舉反例法.8、D【解析】

由表易得x+(10-x)=10,所以總人數(shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團總人數(shù)為30人,∴合唱團成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.9、B【解析】

求出AD=BD,根據(jù)∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根據(jù)ASA證△FBD≌△CAD,推出CD=DF即可.【詳解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故選:B.【點睛】此題主要考查了全等三角形的判定,關鍵是找出能使三角形全等的條件.10、A?!窘馕觥俊邔τ邳cA(x1,y1),B(x2,y2),,∴如果設C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6),那么,。又∵,∴?!唷A?,則C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6)都在直線上,∴互不重合的四點C,D,E,F(xiàn)在同一條直線上。故選A。二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

根據(jù)平行線的性質即可得到∠2=∠ABC+∠1,據(jù)此進行計算即可.【詳解】解:∵直線m∥n,∴∠2=∠ABC+∠1=30°+20°=1°,故答案為:1.【點睛】本題考查了平行線的性質,熟練掌握平行線的性質是解題的關鍵.12、【解析】試題分析:根據(jù)已知數(shù)字等式得出變化規(guī)律,即可得出答案:∵,,,,…,∴。13、﹣1<a<1【解析】

解:∵k>0,∴在圖象的每一支上,y隨x的增大而減小,①當點(a-1,y1)、(a+1,y2)在圖象的同一支上,∵y1<y2,∴a-1>a+1,解得:無解;②當點(a-1,y1)、(a+1,y2)在圖象的兩支上,∵y1<y2,∴a-1<0,a+1>0,解得:-1<a<1.故答案為:-1<a<1.【點睛】本題考查反比例函數(shù)的性質.14、5:1【解析】

根據(jù)題意作出合適的輔助線,然后根據(jù)三角形相似即可解答本題.【詳解】解:作AE∥BC交DC于點E,交DF于點F,設每個小正方形的邊長為a,則△DEF∽△DCN,∴==,∴EF=a,∵AF=2a,∴AE=a,∵△AME∽△BMC,∴===,故答案為:5:1.【點睛】本題考查相似三角形的判定與性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.15、.【解析】

根據(jù)共走了45米,每次前進5米且左轉的角度相同,則可計算出該正多邊形的邊數(shù),再根據(jù)外角和計算左轉的角度.【詳解】連續(xù)左轉后形成的正多邊形邊數(shù)為:,則左轉的角度是.故答案是:.【點睛】本題考查了多邊形的外角計算,正確理解多邊形的外角和是360°是關鍵.16、>【解析】

根據(jù)一次函數(shù)的性質,k<0時,y隨x的增大而減小.【詳解】因為k=﹣<0,所以函數(shù)值y隨x的增大而減小,因為1<4,所以,m>n.故答案為:>【點睛】本題考核知識點:一次函數(shù).解題關鍵點:熟記一次函數(shù)的性質.三、解答題(共8題,共72分)17、不等式組的解集為﹣7<x≤1,將解集表示在數(shù)軸上表示見解析.【解析】試題分析:先解不等式組中的每一個不等式,再根據(jù)大大取較大,小小取較小,大小小大取中間,大大小小無解,把它們的解集用一條不等式表示出來.試題解析:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在數(shù)軸上表示為:.考點:解一元一次不等式組;在數(shù)軸上表示不等式的解集.點睛:分別求出各不等式的解集,再求出其公共解集即可.不等式組的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.18、(1)y=﹣x2+2x+3;D(1,4);(2)證明見解析;(3)m=;【解析】

(1)①把C點坐標代入y=﹣x2+2mx+3m2可求出m的值,從而得到拋物線解析式,然后把一般式配成頂點式得到D點坐標;②如圖1,先解方程﹣x2+2x+3=0得B(3,0),則可判斷△OCB為等腰直角三角形得到∠OBC=45°,再證明△CDE為等腰直角三角形得到∠DCE=45°,從而得到∠DCE=∠BCE;(2)拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,把一般式配成頂點式得到拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),通過解方程﹣x2+2mx+3m2=0得B(3m,0),同時確定C(0,3m2),再利用相似比表示出GF=2m2,則DG=2m2,接著證明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.【詳解】(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),∴拋物線解析式為y=﹣x2+2x+3;∵∴頂點D為(1,4);②證明:如圖1,當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,則B(3,0),∵OC=OB,∴△OCB為等腰直角三角形,∴∠OBC=45°,∵CE⊥直線x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE為等腰直角三角形,∴∠DCE=45°,∴∠DCE=∠BCE;(2)解:拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,∴拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),當y=0時,﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,則B(3m,0),當x=0時,y=﹣x2+2mx+3m2=3m2,則C(0,3m2),∵GF∥OC,∴即解得GF=2m2,∴DG=4m2﹣2m2=2m2,∵CB平分∠DCO,∴∠DCB=∠OCB,∵∠OCB=∠DGC,∴∠DCG=∠DGC,∴DC=DG,即m2+(4m2﹣3m2)2=4m4,∴而m>0,∴【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質和等腰三角形的性質;會利用待定系數(shù)法求函數(shù)解析式;靈活應用等腰直角三角形的性質進行幾何計算;理解坐標與圖形性質,記住兩點間的距離公式.19、(1)1;(2);(3)x時,y有最大值,最大值.【解析】

(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計算即可;(3)分三種情形討論求解即可解決問題:①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.②當x≤4時,M在BC上運動,N在OB上運動.③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.【詳解】(1)由旋轉性質可知:OB=OC,∠BOC=1°,∴△OBC是等邊三角形,∴∠OBC=1°.故答案為1.(2)如圖1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC?OA?AB2×2.∵△BOC是等邊三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.則NE=ON?sin1°x,∴S△OMN?OM?NE1.5xx,∴yx2,∴x時,y有最大值,最大值.②當x≤4時,M在BC上運動,N在OB上運動.作MH⊥OB于H.則BM=8﹣1.5x,MH=BM?sin1°(8﹣1.5x),∴yON×MHx2+2x.當x時,y取最大值,y,③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y?MN?OG=12x,當x=4時,y有最大值,最大值=2.綜上所述:y有最大值,最大值為.【點睛】本題考查幾何變換綜合題、30度的直角三角形的性質、等邊三角形的判定和性質、三角形的面積等知識,解題的關鍵是學會用分類討論的思想思考問題.20、(1);(2)詳見解析;(3)為定值,=【解析】

(1)把點B(4,0),點P(1,–3)代入y=ax2+c(a≠0),用待定系數(shù)法求解即可;(2)如圖作輔助線AE、BF垂直

x軸,設A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直線AB的解析式即可得到結論;(3)作PQ⊥AB于點Q,設P(m,am2+c)、A(–t,0)、B(t,0),則at2+c=0,c=–at2由PQ∥ON,可得ON=amt+at2,OM=–amt+at2,然后把ON,OM,OC的值代入整理即可.【詳解】(1)把點B(4,0),點P(1,–3)代入y=ax2+c(a≠0),,解之得,∴;(2)如圖作輔助線AE、BF垂直

x軸,設A(m,am2)、B(n,an2),∵OA⊥OB,∴∠AOE=∠OBF,∴△AOE∽△OBF,∴,,,直線AB過點A(m,am2)、點B(n,an2),∴過點(0,);(3)作PQ⊥AB于點Q,設P(m,am2+c)、A(–t,0)、B(t,0),則at2+c=0,c=–at2∵PQ∥ON,∴,ON=====at(m+t)=amt+at2,同理:OM=–amt+at2,所以,OM+ON=2at2=–2c=OC,所以,=.【點睛】本題考查了待定系數(shù)法求函數(shù)解析式,相似三角形的判定與性質,平行線分線段成比例定理.正確作出輔助線是解答本題的關鍵.21、(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等;(2)1;(3).【解析】試題分析:(1)根據(jù)線段的垂直平分線的性質即可判斷.(2)如圖②中,作AE⊥BC于E.根據(jù)已知得出AE=BE,再求出BD的長,即可求出DE的長.(3)如圖③中,作CH⊥AF于H,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長,然后證明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等(2)解:如圖②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3,∴AE=BE=3,∵AD為BC邊中線,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴邊BC的中垂距為1(3)解:如圖③中,作CH⊥AF于H.∵四邊形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE==5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴=,∴=,∴EH=,∴△ACF中邊AF的中垂距為22、(1)詳見解析;(2)詳見解析;(3)910【解析】(1)連接BD,由三角形ABC為等腰直角三角形,求出∠A與∠C的度數(shù),根據(jù)AB為圓的直徑,利用圓周角定理得到∠ADB為直角,即BD垂直于AC,利用直角三角形斜邊上的中線等于斜邊的一半,得到AD=DC=BD=12(2)連接EF,BG,由三角形AED與三角形BFD全等,得到ED=FD,進而得到三角形DEF為等腰直角三角形,利用圓周角定理及等腰直角三角形性質得到一對同位角相等,利用同位角相等兩直線平行即可得證;(3)由全等三角形對應邊相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的長,利用銳角三角形函數(shù)定義求出DE的長,利用兩對角相等的三角形相似得到三角形AED與三角形GEB相似,由相似得比例,求出GE的長,由GE+ED求出GD的長即可.(1)證明:連接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB為圓O的直徑,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,∠A=∠FBD,AD=BD,∠EDA=∠FDB,∴△AED≌△BFD(ASA),∴AE=BF;(2)證明:連接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△ED

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論