遼寧省兩校聯考2023-2024學年高考數學三模試卷含解析_第1頁
遼寧省兩校聯考2023-2024學年高考數學三模試卷含解析_第2頁
遼寧省兩校聯考2023-2024學年高考數學三模試卷含解析_第3頁
遼寧省兩校聯考2023-2024學年高考數學三模試卷含解析_第4頁
遼寧省兩校聯考2023-2024學年高考數學三模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省兩校聯考2023-2024學年高考數學三模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數,黑點為陰數.若從這10個數中任取3個數,則這3個數中至少有2個陽數且能構成等差數列的概率為()A. B. C. D.2.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.3.集合,,則()A. B. C. D.4.若復數滿足(為虛數單位),則其共軛復數的虛部為()A. B. C. D.5.已知為坐標原點,角的終邊經過點且,則()A. B. C. D.6.已知三棱柱()A. B. C. D.7.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.8.一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,則容器里水面的最大高度為()A. B. C. D.9.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直10.設,,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件11.在中,已知,,,為線段上的一點,且,則的最小值為()A. B. C. D.12.已知不等式組表示的平面區(qū)域的面積為9,若點,則的最大值為()A.3 B.6 C.9 D.12二、填空題:本題共4小題,每小題5分,共20分。13.若函數,則使得不等式成立的的取值范圍為_________.14.已知集合,,則_____________.15.如圖是一個算法流程圖,若輸出的實數的值為,則輸入的實數的值為______________.16.設是公差不為0的等差數列的前n項和,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知直線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的極坐標為,直線與曲線的交點為,求的值.18.(12分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點.(1)證明:平面;(2)求二面角平面角的余弦值.19.(12分)已知,,,.(1)求的值;(2)求的值.20.(12分)在平面直角坐標系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標準方程;(2)設直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.21.(12分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設橢圓的離心率為,當點為橢圓的右頂點時,的坐標為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.22.(10分)數列滿足,,其前n項和為,數列的前n項積為.(1)求和數列的通項公式;(2)設,求的前n項和,并證明:對任意的正整數m、k,均有.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

先根據組合數計算出所有的情況數,再根據“3個數中至少有2個陽數且能構成等差數列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數有:種,3個數中至少有2個陽數且能構成等差數列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數較多時,可考慮用排列數、組合數去計算.2、C【解析】

設,根據導數的幾何意義,求出切線斜率,進而得到切線方程,將點坐標代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【詳解】圓可化為.設,則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【點睛】本題考查直線與圓位置關系、直線與拋物線位置關系,拋物線兩切點所在直線求解是解題的關鍵,屬于中檔題.3、A【解析】

解一元二次不等式化簡集合A,再根據對數的真數大于零化簡集合B,求交集運算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點睛】本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數的概念,屬于中檔題.4、D【解析】

由已知等式求出z,再由共軛復數的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數=-1+,虛部為1故選D.【點睛】本題考查復數代數形式的乘除運算和共軛復數的基本概念,屬于基礎題.5、C【解析】

根據三角函數的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結果.【詳解】根據題意,,解得,所以,所以,所以.故選:C.【點睛】本題考查三角函數定義的應用和二倍角的正弦公式,考查計算能力.6、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內,矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=7、B【解析】

首先由三視圖還原幾何體,進一步求出幾何體的棱長.【詳解】解:根據三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點睛】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎題.8、B【解析】

根據已知可知水面的最大高度為正方體面對角線長的一半,由此得到結論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎題.9、D【解析】

根據異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據異面直線的性質知,過只有唯一平面與平行,故正確.C.根據過一點有且只有一個平面與已知直線垂直知,故正確.D.根據異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.10、A【解析】

根據對數的運算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.11、A【解析】

在中,設,,,結合三角形的內角和及和角的正弦公式化簡可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標系,根據已知條件結合向量的坐標運算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設,,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標系,則、、,為線段上的一點,則存在實數使得,,設,,則,,,,,消去得,,所以,,當且僅當時,等號成立,因此,的最小值為.故選:A.【點睛】本題是一道構思非常巧妙的試題,綜合考查了三角形的內角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關鍵是理解是一個單位向量,從而可用、表示,建立、與參數的關系,解決本題的第二個關鍵點在于由,發(fā)現為定值,從而考慮利用基本不等式求解最小值,考查計算能力,屬于難題.12、C【解析】

分析:先畫出滿足約束條件對應的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標,代入目標函數求得最大值.詳解:作出不等式組對應的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當過點時,取得最大值9,故選C.點睛:該題考查的是有關線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應的可行域,之后根據目標函數的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯立方程組,求得最優(yōu)解的坐標,代入求值,要明確目標函數的形式大體上有三種:斜率型、截距型、距離型;根據不同的形式,應用相應的方法求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分,兩種情況代入討論即可求解.【詳解】,當時,,符合;當時,,不滿足.故答案為:【點睛】本題主要考查了分段函數的計算,考查了分類討論的思想.14、【解析】

由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點睛】本題考查了交集及其運算,屬于基礎題.15、【解析】

根據程序框圖得到程序功能,結合分段函數進行計算即可.【詳解】解:程序的功能是計算,若輸出的實數的值為,則當時,由得,當時,由,此時無解.故答案為:.【點睛】本題主要考查程序框圖的識別和判斷,理解程序功能是解決本題的關鍵,屬于基礎題.16、18【解析】

將已知已知轉化為的形式,化簡后求得,利用等差數列前公式化簡,由此求得表達式的值.【詳解】因為,所以.故填:.【點睛】本題考查等差數列基本量的計算,考查等差數列的性質以及求和,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)由公式可化極坐標方程為直角坐標方程;(2)把點極坐標化為直角坐標,直線的參數方程是過定點的標準形式,因此直接把參數方程代入曲線的方程,利用參數的幾何意義求解.【詳解】解:(1),則,∴,所以曲線的直角坐標方程為,即(2)點的直角坐標為,易知.設對應參數分別為將與聯立得【點睛】本題考查極坐標方程與直角坐標方程的互化,考查直線參數方程,解題時可利用利用參數方程的幾何意義求直線上兩點間距離問題.18、(1)證明見解析(2)【解析】

(1)分別取,的中點,,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點為原點,以為軸,以為軸,以為軸,建立空間直角坐標系,分別計算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計算即可.【詳解】(1)證明:分別取,的中點,,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點為原點,以為軸,以為軸,以為軸,建立如圖所示空間直角坐標系由面,所以面的法向量可取,點,點,點,,,設面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點睛】本題考查由面面平行證明線面平行以及向量法求二面角的余弦值,考查學生的運算能力,在做此類題時,一定要準確寫出點的坐標.19、(1)(2)【解析】

(1)先利用同角的三角函數關系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因為,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因為且,即,解得,因為,所以,所以,所以,所以【點睛】本題考查已知三角函數值求值,考查三角函數的化簡,考查和角公式,二倍角公式,同角的三角函數關系的應用,考查運算能力.20、(1);(2)①證明見解析;②【解析】

(1)由題意焦距為2,設點,代入橢圓,解得,從而四邊形的面積,由此能求出橢圓的標準方程.(2)①由題意,聯立直線與橢圓的方程,得,推導出,,,,由此猜想:直線過定點,從而能證明,,三點共線,直線過定點.②由題意設,,,,直線,代入橢圓標準方程:,得,推導出,,由此推導出(定值).【詳解】(1)由題意焦距為2,可設點,代入橢圓,得,解得,四邊形的面積,,,橢圓的標準方程為.(2)①由題意,聯立直線與橢圓的方程,得,,解得,從而,,,同理可得,,猜想:直線過定點,下證之:,,,,三點共線,直線過定點.②為定值,理由如下:由題意設,,,,直線,代入橢圓標準方程:,得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論