舟山市重點中學中考試題猜想數(shù)學試卷及答案解析_第1頁
舟山市重點中學中考試題猜想數(shù)學試卷及答案解析_第2頁
舟山市重點中學中考試題猜想數(shù)學試卷及答案解析_第3頁
舟山市重點中學中考試題猜想數(shù)學試卷及答案解析_第4頁
舟山市重點中學中考試題猜想數(shù)學試卷及答案解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

舟山市重點中學中考試題猜想數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm2.將拋物線y=A.y=-12C.y=-123.對于一組統(tǒng)計數(shù)據:1,6,2,3,3,下列說法錯誤的是()A.平均數(shù)是3 B.中位數(shù)是3 C.眾數(shù)是3 D.方差是2.54.如圖,是由一個圓柱體和一個長方體組成的幾何體,其主視圖是()A. B. C. D.5.二次函數(shù)的圖象如圖所示,則下列各式中錯誤的是()A.abc>0 B.a+b+c>0 C.a+c>b D.2a+b=06.如果k<0,b>0,那么一次函數(shù)y=kx+b的圖象經過()A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限7.如圖,△ABC內接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.58.下列命題中,真命題是()A.對角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對稱圖形又是中心對稱圖形C.圓的切線垂直于經過切點的半徑D.垂直于同一直線的兩條直線互相垂直9.在0,﹣2,3,四個數(shù)中,最小的數(shù)是()A.0 B.﹣2 C.3 D.10.如圖,菱形ABCD中,E.F分別是AB、AC的中點,若EF=3,則菱形ABCD的周長是()A.12 B.16 C.20 D.24二、填空題(共7小題,每小題3分,滿分21分)11.若xay與3x2yb是同類項,則ab的值為_____.12.在函數(shù)y=x-1的表達式中,自變量x的取值范圍是.13.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE=_____°.14.用黑白兩種顏色的正六邊形地面磚按如圖所示的規(guī)律,拼成若干圖案:第4個圖案有白色地面磚______塊;第n個圖案有白色地面磚______塊.15.已知m=,n=,那么2016m﹣n=_____.16.如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,連接BD,CE交于點O,則線段AO的最大值為_____.17.如圖是利用直尺和三角板過已知直線l外一點P作直線l的平行線的方法,其理由是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張在小道上測得如下數(shù)據:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.請幫助小張求出小橋PD的長并確定小橋在小道上的位置.(以A,B為參照點,結果精確到0.1米)(參考數(shù)據:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)19.(5分)在數(shù)學實踐活動課上,老師帶領同學們到附近的濕地公園測量園內雕塑的高度.用測角儀在A處測得雕塑頂端點C′的仰角為30°,再往雕塑方向前進4米至B處,測得仰角為45°.問:該雕塑有多高?(測角儀高度忽略不計,結果不取近似值.)20.(8分)我校舉行“漢字聽寫”比賽,每位學生聽寫漢字39個,比賽結束后隨機抽查部分學生的聽寫結果,以下是根據抽查結果繪制的統(tǒng)計圖的一部分.組別正確數(shù)字x人數(shù)A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根據以上信息解決下列問題:(1)在統(tǒng)計表中,m=,n=,并補全條形統(tǒng)計圖.(2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù)是.(3)有三位評委老師,每位老師在E組學生完成學校比賽后,出示“通過”或“淘汰”或“待定”的評定結果.學校規(guī)定:每位學生至少獲得兩位評委老師的“通過”才能代表學校參加鄂州市“漢字聽寫”比賽,請用樹形圖求出E組學生王云參加鄂州市“漢字聽寫”比賽的概率.21.(10分)如圖,在△ABC中,AD、AE分別為△ABC的中線和角平分線.過點C作CH⊥AE于點H,并延長交AB于點F,連接DH,求證:DH=BF.22.(10分)先化簡:,再請你選擇一個合適的數(shù)作為x的值代入求值.23.(12分)已知:如圖所示,在中,,,求和的度數(shù).24.(14分)如圖,拋物線y=x2+bx+c與x軸交于點A(﹣1,0),B(4,0)與y軸交于點C,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線1,交拋物線與點Q.求拋物線的解析式;當點P在線段OB上運動時,直線1交BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;在點P運動的過程中,坐標平面內是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

利用扇形的弧長公式可得扇形的弧長;讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個圓錐形筒的高為(cm).故選C.【點睛】此題考查了圓錐的計算,用到的知識點為:圓錐側面展開圖的弧長=;圓錐的底面周長等于側面展開圖的弧長;圓錐的底面半徑,母線長,高組成以母線長為斜邊的直角三角形.2、D【解析】

將拋物線y=12【詳解】由題意得,a=-12設旋轉180°以后的頂點為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉180°以后的頂點為(2,1),∴旋轉180°以后所得圖象的解析式為:y=-1故選D.【點睛】本題考查了二次函數(shù)圖象的旋轉變換,在繞拋物線某點旋轉180°以后,二次函數(shù)的開口大小沒有變化,方向相反;設旋轉前的的頂點為(x,y),旋轉中心為(a,b),由中心對稱的性質可知新頂點坐標為(2a-x,2b-y),從而可求出旋轉后的函數(shù)解析式.3、D【解析】

根據平均數(shù)、中位數(shù)、眾數(shù)和方差的定義逐一求解可得.【詳解】解:A、平均數(shù)為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數(shù)為3,正確;C、眾數(shù)為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.【點睛】本題考查了眾數(shù)、平均數(shù)、中位數(shù)、方差.平均數(shù)平均數(shù)表示一組數(shù)據的平均程度.中位數(shù)是將一組數(shù)據從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據波動大小的量.4、B【解析】試題分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據立體圖形可得:主視圖的上面和下面各為一個矩形,且下面矩形的長比上面矩形的長要長一點,兩個矩形的寬一樣大?。键c:三視圖.5、B【解析】

根據二次函數(shù)的圖象與性質逐一判斷即可.【詳解】解:由圖象可知拋物線開口向上,∴,∵對稱軸為,∴,∴,∴,故D正確,又∵拋物線與y軸交于y軸的負半軸,∴,∴,故A正確;當x=1時,,即,故B錯誤;當x=-1時,即,∴,故C正確,故答案為:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)之間的關系,解題的關鍵是熟練掌握二次函數(shù)各系數(shù)的意義以及二次函數(shù)的圖象與性質.6、D【解析】

根據k、b的符號來求確定一次函數(shù)y=kx+b的圖象所經過的象限.【詳解】∵k<0,

∴一次函數(shù)y=kx+b的圖象經過第二、四象限.

又∵b>0時,

∴一次函數(shù)y=kx+b的圖象與y軸交與正半軸.

綜上所述,該一次函數(shù)圖象經過第一、二、四象限.

故選D.【點睛】本題主要考查一次函數(shù)圖象在坐標平面內的位置與k、b的關系.解答本題注意理解:直線y=kx+b所在的位置與k、b的符號有直接的關系.k>0時,直線必經過一、三象限.k<0時,直線必經過二、四象限.b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負半軸相交.7、C【解析】

如圖(見解析),連接BD、CD,根據圓周角定理可得,再根據相似三角形的判定定理可得,然后由相似三角形的性質可得,同理可得;又根據圓周角定理可得,再根據正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質、正切函數(shù)值等知識點,通過作輔助線,結合圓周角定理得出相似三角形是解題關鍵.8、C【解析】分析是否為真命題,需要分別分析各題設是否能推出結論,從而利用排除法得出答案.解答:解:A、錯誤,例如對角線互相垂直的等腰梯形;B、錯誤,等腰梯形是軸對稱圖形不是中心對稱圖形;C、正確,符合切線的性質;D、錯誤,垂直于同一直線的兩條直線平行.故選C.9、B【解析】

根據實數(shù)比較大小的法則進行比較即可.【詳解】∵在這四個數(shù)中3>0,>0,-2<0,∴-2最?。蔬xB.【點睛】本題考查的是實數(shù)的大小比較,即正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而?。?0、D【解析】

根據三角形的中位線平行于第三邊并且等于第三邊的一半求出,再根據菱形的周長公式列式計算即可得解.【詳解】、分別是、的中點,是的中位線,,菱形的周長.故選:.【點睛】本題主要考查了菱形的四邊形都相等,三角形的中位線平行于第三邊并且等于第三邊的一半,求出菱形的邊長是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】試題解析:∵xay與3x2yb是同類項,∴a=2,b=1,則ab=2.12、x≥1.【解析】

根據被開方數(shù)大于等于0列式計算即可得解.【詳解】根據題意得,x﹣1≥0,解得x≥1.故答案為x≥1.【點睛】本題考查函數(shù)自變量的取值范圍,知識點為:二次根式的被開方數(shù)是非負數(shù).13、1【解析】

根據△ABC中DE垂直平分AC,可求出AE=CE,再根據等腰三角形的性質求出∠ACE=∠A=30°,再根據∠ACB=80°即可解答.【詳解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案為:1.14、18塊(4n+2)塊.【解析】

由已知圖形可以發(fā)現(xiàn):前三個圖形中白色地磚的塊數(shù)分別為:6,10,14,所以可以發(fā)現(xiàn)每一個圖形都比它前一個圖形多4個白色地磚,所以可以得到第n個圖案有白色地面磚(4n+2)塊.【詳解】解:第1個圖有白色塊4+2,第2圖有4×2+2,第3個圖有4×3+2,所以第4個圖應該有4×4+2=18塊,第n個圖應該有(4n+2)塊.【點睛】此題考查了平面圖形,主要培養(yǎng)學生的觀察能力和空間想象能力.15、1【解析】

根據積的乘方的性質將m的分子轉化為以3和5為底數(shù)的冪的積,然后化簡從而得到m=n,再根據任何非零數(shù)的零次冪等于1解答.【詳解】解:∵m===,∴m=n,∴2016m-n=20160=1.故答案為:1【點睛】本題考查了同底數(shù)冪的除法,積的乘方的性質,難點在于轉化m的分母并得到m=n.16、【解析】

過O作OF⊥AO且使OF=AO,連接AF、CF,可知△AOF是等腰直角三角形,進而可得AF=AO,根據正方形的性質可得OB=OC,∠BOC=90°,由銳角互余的關系可得∠AOB=∠COF,進而可得△AOB≌△COF,即可證明AB=CF,當點A、C、F三點不共線時,根據三角形的三邊關系可得AC+CF>AF,當點A、C、F三點共線時可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.【詳解】如圖,過O作OF⊥AO且使OF=AO,連接AF、CF,∴∠AOF=90°,△AOF是等腰直角三角形,∴AF=AO,∵四邊形BCDE是正方形,∴OB=OC,∠BOC=90°,∵∠BOC=∠AOF=90°,∴∠AOB+∠AOC=∠COF+∠AOC,∴∠AOB=∠COF,又∵OB=OC,AO=OF,∴△AOB≌△COF,∴CF=AB=4,當點A、C、F三點不共線時,AC+CF>AF,當點A、C、F三點共線時,AC+CF=AC+AB=AF=7,∴AF≤AC+CF=7,∴AF的最大值是7,∴AF=AO=7,∴AO=.故答案為【點睛】本題考查正方形的性質,全等三角形的判定與性質,熟練掌握相關定理及性質是解題關鍵.17、同位角相等,兩直線平行.【解析】試題解析:利用三角板中兩個60°相等,可判定平行考點:平行線的判定三、解答題(共7小題,滿分69分)18、49.2米【解析】

設PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的長度,繼而也可確定小橋在小道上的位置.【詳解】解:設PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°.在Rt△PAD中,,∴.在Rt△PBD中,,∴.又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.∴DB=2x=49.2米.答:小橋PD的長度約為24.6米,位于AB之間距B點約49.2米.19、該雕塑的高度為(2+2)米.【解析】

過點C作CD⊥AB,設CD=x,由∠CBD=45°知BD=CD=x米,根據tanA=列出關于x的方程,解之可得.【詳解】解:如圖,過點C作CD⊥AB,交AB延長線于點D,設CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即,解得:x=2+2,答:該雕塑的高度為(2+2)米.【點睛】本題主要考查解直角三角形的應用-仰角俯角問題,解題的關鍵是根據題意構建直角三角形,并熟練掌握三角函數(shù)的應用.20、(1)m=30,n=20,圖詳見解析;(2)90°;(3).【解析】分析:(1)、根據B的人數(shù)和百分比得出總人數(shù),從而根據總人數(shù)分別求出m和n的值;(2)、根據C的人數(shù)和總人數(shù)的比值得出扇形的圓心角度數(shù);(3)、首先根據題意畫出樹狀圖,然后根據概率的計算法則得出答案.詳解:(1)∵總人數(shù)為15÷15%=100(人),∴D組人數(shù)m=100×30%=30,E組人數(shù)n=100×20%=20,補全條形圖如下:(2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù)是360°×=90°,(3)記通過為A、淘汰為B、待定為C,畫樹狀圖如下:由樹狀圖可知,共有27種等可能結果,其中獲得兩位評委老師的“通過”有7種情況,∴E組學生王云參加鄂州市“漢字聽寫”比賽的概率為.點睛:本題主要考查的就是扇形統(tǒng)計圖、條形統(tǒng)計圖以及概率的計算法則,屬于基礎題型.解決這個問題,我們一定要明白樣本容量=頻數(shù)÷頻率,根據這個公式即可進行求解.21、見解析.【解析】

先證明△AFC為等腰三角形,根據等腰三角形三線合一證明H為FC的中點,又D為BC的中點,根據中位線的性質即可證明.【詳解】∵AE為△ABC的角平分線,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,HF=CH,∵AD為△ABC的中線,∴DH是△BCF的中位線,∴DH=BF.【點睛】本題考查三角形中位線定理,等腰三角形的判定與性質.解決本題的關鍵是證明H點為FC的中點,然后利用中位線的性質解決問題.本題中要證明DH=BF,一般三角形中出現(xiàn)這種2倍或關系時,常用中位線的性質解決.22、x﹣1,1.【解析】

先通分計算括號里的,再計算括號外的,最后根據分式性質,找一個恰當?shù)臄?shù)2(此數(shù)不唯一)代入化簡后的式子計算即可.【詳解】解:原式==x﹣1,根據分式的意義可知,x≠0,且x≠±1,當x=2時,原式=2﹣1=1.【點睛】本題主要考查分式的化簡求值,化簡過程中要注意運算順序,化簡結果是最簡形式,難點在于當未知數(shù)的值沒有明確給出時,所選取的未知數(shù)的值必須使原式的各分式都有意義,且除數(shù)不能為零.23、,.【解析】

根據等腰三角形的性質即可求出∠B,再根據三角形外角定理即可求出∠C.【詳解】在中,,∵,在三角形中,,又∵,在三角形中,∴.【點睛】此題主要考查等腰三角形的性質,解題的關鍵是熟知等邊對等角.24、(1);(2)當m=2時,四邊形CQMD為平行四邊形;(3)Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2)【解析】

(1)直接將A(-1,0),B(4,0)代入拋物線y=x2+bx+c方程即可;

(2)由(1)中的解析式得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論