




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市普陀區(qū)中考聯考數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,夜晚,小亮從點A經過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數關系的圖象大致為()A. B.C. D.2.已知拋物線y=ax2+bx+c的圖象如圖所示,頂點為(4,6),則下列說法錯誤的是()A.b2>4ac B.ax2+bx+c≤6C.若點(2,m)(5,n)在拋物線上,則m>n D.8a+b=03.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數為()A.40° B.50° C.60° D.70°4.把圖中的五角星圖案,繞著它的中心點O進行旋轉,若旋轉后與自身重合,則至少旋轉()A.36° B.45° C.72° D.90°5.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=06.下列因式分解正確的是A. B.C. D.7.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.38.如果邊長相等的正五邊形和正方形的一邊重合,那么∠1的度數是()A.30° B.15° C.18° D.20°9.實數4的倒數是()A.4 B. C.﹣4 D.﹣10.如圖,將△ABC繞點C(0,-1)旋轉180°得到△A′B′C,設點A的坐標為(a,b),則點A′的坐標為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:ax2﹣2ax+a=___________.12.如圖,把一個面積為1的正方形分成兩個面積為的長方形,再把其中一個面積為的長方形分成兩個面積為的正方形,再把其中一個面積為的正方形分成兩個面積為的長方形,如此進行下去……,試用圖形揭示的規(guī)律計算:__________.13.如圖,在平面直角坐標系中有一正方形AOBC,反比例函數經過正方形AOBC對角線的交點,半徑為()的圓內切于△ABC,則k的值為________.14.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點D、E分別在邊AC、BC上,且CD:CE=3︰1.將△CDE繞點D順時針旋轉,當點C落在線段DE上的點F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.15.分解因式:x2y﹣y=_____.16.如圖,反比例函數y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____.17.甲、乙兩個機器人檢測零件,甲比乙每小時多檢測20個,甲檢測300個比乙檢測200個所用的時間少,若設甲每小時檢測個,則根據題意,可列出方程:__________.三、解答題(共7小題,滿分69分)18.(10分)如圖1,在四邊形ABCD中,AB=AD.∠B+∠ADC=180°,點E,F分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數量關系.圖1圖2圖3(1)思路梳理將△ABE繞點A逆時針旋轉至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線.易證△AFG,故EF,BE,DF之間的數量關系為;(2)類比引申如圖2,在圖1的條件下,若點E,F由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數量關系,并給出證明.(3)聯想拓展如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°.若BD=1,EC=2,則DE的長為.19.(5分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數,且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.20.(8分)如圖,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一點,BD=8,DE⊥AB,垂足為E,求線段DE的長.21.(10分)如圖,在四邊形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度數;四邊形ABCD的面積(結果保留根號).22.(10分)如圖所示,一艘輪船位于燈塔P的北偏東方向與燈塔Р的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東方向上的B處.求此時輪船所在的B處與燈塔Р的距離.(結果保留根號)23.(12分)為了了解學生關注熱點新聞的情況,“兩會”期間,小明對班級同學一周內收看“兩會”新聞的次數情況作了調查,調查結果統(tǒng)計如圖所示(其中男生收看次的人數沒有標出).根據上述信息,解答下列各題:×(1)該班級女生人數是__________,女生收看“兩會”新聞次數的中位數是________;(2)對于某個群體,我們把一周內收看某熱點新聞次數不低于次的人數占其所在群體總人數的百分比叫做該群體對某熱點新聞的“關注指數”.如果該班級男生對“兩會”新聞的“關注指數”比女生低,試求該班級男生人數;(3)為進一步分析該班級男、女生收看“兩會”新聞次數的特點,小明給出了男生的部分統(tǒng)計量(如表).統(tǒng)計量平均數(次)中位數(次)眾數(次)方差…該班級男生…根據你所學過的統(tǒng)計知識,適當計算女生的有關統(tǒng)計量,進而比較該班級男、女生收看“兩會”新聞次數的波動大小.24.(14分)如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙O交AB于點D,交AC于點G,直線DF是⊙O的切線,D為切點,交CB的延長線于點E.(1)求證:DF⊥AC;(2)求tan∠E的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】設身高GE=h,CF=l,AF=a,當x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數,∴自變量x的系數是固定值,∴這個函數圖象肯定是一次函數圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點,進而隨著離燈光的越來越遠而影長將變大.故選A.2、C【解析】觀察可得,拋物線與x軸有兩個交點,可得,即,選項A正確;拋物線開口向下且頂點為(4,6)可得拋物線的最大值為6,即,選項B正確;由題意可知拋物線的對稱軸為x=4,因為4-2=2,5-4=1,且1<2,所以可得m<n,選項C錯誤;因對稱軸,即可得8a+b=0,選項D正確,故選C.點睛:本題主要考查了二次函數y=ax2+bx+c圖象與系數的關系,解決本題的關鍵是從圖象中獲取信息,利用數形結合思想解決問題,本題難度適中.3、B【解析】
解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.4、C【解析】分析:五角星能被從中心發(fā)出的射線平分成相等的5部分,再由一個周角是360°即可求出最小的旋轉角度.詳解:五角星可以被中心發(fā)出的射線平分成5部分,那么最小的旋轉角度為:360°÷5=72°.故選C.點睛:本題考查了旋轉對稱圖形的概念:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角.5、D【解析】試題解析:含有兩個未知數,不是整式方程,C沒有二次項.故選D.點睛:一元二次方程需要滿足三個條件:含有一個未知數,未知數的最高次數是2,整式方程.6、D【解析】
直接利用提取公因式法以及公式法分解因式,進而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.7、D【解析】
直接利用提取公因式法以及冪的乘方運算法則將原式變形進而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【點睛】此題主要考查了冪的乘方運算,正確將原式變形是解題關鍵.8、C【解析】
∠1的度數是正五邊形的內角與正方形的內角的度數的差,根據多邊形的內角和定理求得角的度數,進而求解.【詳解】∵正五邊形的內角的度數是×(5-2)×180°=108°,正方形的內角是90°,
∴∠1=108°-90°=18°.故選C【點睛】本題考查了多邊形的內角和定理、正五邊形和正方形的性質,求得正五邊形的內角的度數是關鍵.9、B【解析】
根據互為倒數的兩個數的乘積是1,求出實數4的倒數是多少即可.【詳解】解:實數4的倒數是:1÷4=.故選:B.【點睛】此題主要考查了一個數的倒數的求法,要熟練掌握,解答此題的關鍵是要明確:互為倒數的兩個數的乘積是1.10、D【解析】
設點A的坐標是(x,y),根據旋轉變換的對應點關于旋轉中心對稱,再根據中點公式列式求解即可.【詳解】根據題意,點A、A′關于點C對稱,
設點A的坐標是(x,y),
則
=0,
=-1,
解得x=-a,y=-b-2,
∴點A的坐標是(-a,-b-2).
故選D.【點睛】本題考查了利用旋轉進行坐標與圖形的變化,根據旋轉的性質得出點A、A′關于點C成中心對稱是解題的關鍵二、填空題(共7小題,每小題3分,滿分21分)11、a(x-1)1.【解析】
先提取公因式a,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】解:ax1-1ax+a,
=a(x1-1x+1),
=a(x-1)1.【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.12、【解析】
結合圖形發(fā)現計算方法:,即計算其面積和的時候,只需讓總面積減去剩下的面積.【詳解】解:原式==故答案為:【點睛】此題注意結合圖形的面積找到計算的方法:其中的面積和等于總面積減去剩下的面積.13、1【解析】試題解析:設正方形對角線交點為D,過點D作DM⊥AO于點M,DN⊥BO于點N;設圓心為Q,切點為H、E,連接QH、QE.∵在正方形AOBC中,反比例函數y=經過正方形AOBC對角線的交點,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四邊形HQEC是正方形,∵半徑為(1-2)的圓內切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-2)2,∴QC2=18-32=(1-1)2,∴QC=1-1,∴CD=1-1+(1-2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【點睛】此題主要考查了正方形的性質以及三角形內切圓的性質以及待定系數法求反比例函數解析式,根據已知求出CD的長度,進而得出DN×NO=1是解決問題的關鍵.14、2【解析】分析:設CD=3x,則CE=1x,BE=12﹣1x,依據∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋轉可得DF=CD=3x,再根據Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,進而得出CD=2.詳解:如圖所示,設CD=3x,則CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋轉可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案為2.點睛:本題考查了相似三角形的判定與性質,勾股定理以及旋轉的性質,解題時注意:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.15、y(x+1)(x﹣1)【解析】
觀察原式x2y﹣y,找到公因式y(tǒng)后,提出公因式后發(fā)現x2-1符合平方差公式,利用平方差公式繼續(xù)分解可得.【詳解】解:x2y﹣y=y(tǒng)(x2﹣1)=y(tǒng)(x+1)(x﹣1).故答案為:y(x+1)(x﹣1).【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.16、(,)【解析】分析:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,則有△AOE≌△OCF,進而可得出AE=OF、OE=CF,根據角平分線的性質可得出,設點A的坐標為(a,)(a>0),由可求出a值,進而得到點A的坐標.詳解:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,如圖所示.∵△ABC為等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BP平分∠ABC,∴,∴.設點A的坐標為(a,),∴,解得:a=或a=-(舍去),∴=,∴點A的坐標為(,),故答案為:((,)).點睛:本題考查了反比例函數圖象上點的坐標特征、全等三角形的判定與性質、角平分線的性質以及等腰直角三角形性質的綜合運用,構造全等三角形,利用全等三角形的對應邊相等是解題的關鍵.17、【解析】【分析】若設甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據甲檢測300個比乙檢測200個所用的時間少,列出方程即可.【解答】若設甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據題意有:.故答案為【點評】考查分式方程的應用,解題的關鍵是找出題目中的等量關系.三、解答題(共7小題,滿分69分)18、(1)△AFE.EF=BE+DF.(2)BF=DF-BE,理由見解析;(3)【解析】試題分析:(1)先根據旋轉得:計算即點共線,再根據SAS證明△AFE≌△AFG,得EF=FG,可得結論EF=DF+DG=DF+AE;
(2)如圖2,同理作輔助線:把△ABE繞點A逆時針旋轉至△ADG,證明△EAF≌△GAF,得EF=FG,所以EF=DF?DG=DF?BE;
(3)如圖3,同理作輔助線:把△ABD繞點A逆時針旋轉至△ACG,證明△AED≌△AEG,得,先由勾股定理求的長,從而得結論.試題解析:(1)思路梳理:如圖1,把△ABE繞點A逆時針旋轉至△ADG,可使AB與AD重合,即AB=AD,由旋轉得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=+=,即點F.D.
G共線,∵四邊形ABCD為矩形,∴∠BAD=,∵∠EAF=,∴∴∴在△AFE和△AFG中,∵∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案為:△AFE,EF=DF+AE;(2)類比引申:如圖2,EF=DF?BE,理由是:把△ABE繞點A逆時針旋轉至△ADG,可使AB與AD重合,則G在DC上,由旋轉得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=,∴∠BAE+∠BAG=,∵∠EAF=,∴∠FAG=?=,∴∠EAF=∠FAG=,在△EAF和△GAF中,∵∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF?DG=DF?BE;(3)聯想拓展:如圖3,把△ABD繞點A逆時針旋轉至△ACG,可使AB與AC重合,連接EG,由旋轉得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=,AB=AC,∴∠B=∠ACB=,∴∠ACG=∠B=,∴∠BCG=∠ACB+∠ACG=+=,∵EC=2,CG=BD=1,由勾股定理得:∵∠BAD=∠CAG,∠BAC=,∴∠DAG=,∵∠BAD+∠EAC=,∴∠CAG+∠EAC==∠EAG,∴∠DAE=,∴∠DAE=∠EAG=,∵AE=AE,∴△AED≌△AEG,∴19、(1)45;(m,﹣m);(2)相似;(3)①;②.【解析】試題分析:(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數;由旋轉的性質得,即可確定出A′坐標;(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關系式,利用三角形相似即可得證;(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關系式;②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉的性質得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點,∴設拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),此時MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當m=2時,a=;若拋物線過點A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點時a的范圍為.考點:1.二次函數綜合題;2.壓軸題;3.探究型;4.最值問題.20、1.【解析】試題分析:根據相似三角形的判定與性質,可得答案.試題解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴BDAB=DEAC,∴DE=考點:相似三角形的判定與性質.21、(1);(2)【解析】
(1)連接AC,由勾股定理求出AC的長,再根據勾股定理的逆定理判斷出△ACD的形狀,進而可求出∠BAD的度數;
(2)由(1)可知△ABC和△ADC是Rt△,再根據S四邊形ABCD=S△ABC+S△ADC即可得出結論.【詳解】解:(1)連接AC,如圖所示:∵AB=BC=1,∠B=90°∴AC=,又∵AD=1,DC=,∴AD2+AC2=3CD2=()2=3即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四邊形ABCD=S△ABC+S△ADC=1×1×+1××=.【點睛】考查的是勾股定理、勾股定理的逆定理及三角形的面積,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.22、海里【解析】
過點P作,則在Rt△APC中易得PC的長,再在直角△BPC中求出PB.【詳解】解:如圖,過點P作,垂足為點C.∴,,海里.在中,,∴(海里).在中,,∴(海里).∴此時輪船所在的B處與燈塔P的距離是海里.【點睛】解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 平行線的判定定理說課
- 共同抵押合同協(xié)議
- 小班瞬間記憶課件
- 插花初級培訓
- 器官捐贈協(xié)議書(2篇)
- 指南培訓全攻略
- 施工現場設備調撥管理協(xié)議
- 定制家具設計費用結算協(xié)議
- 辛集中學高三下學期模擬鞏固訓練(5)歷史試題
- 阿克蘇工業(yè)職業(yè)技術學院《語文學科教學知識與能力實訓教程》2023-2024學年第一學期期末試卷
- 疤痕修復協(xié)議書
- 2025年企業(yè)文化建設工作及2025年的工作計劃
- 第二十屆中央紀律檢查委員會第四次全體會議公報學習解讀
- 書店接待禮儀培訓
- 小學生理性消費課件
- 藥劑科培訓課件:《醫(yī)院特殊藥品管理》
- 2024年7月國家開放大學法律事務??啤睹穹▽W(2)》期末紙質考試試題及答案
- 中央戲劇學院招聘筆試真題2023
- 2021年高級經濟師《高級經濟實務》建筑與房地產經濟專業(yè)考試題庫及答案解析
- 人教版高中物理選擇性必修第三冊第五章原子核第2節(jié)放射性元素的衰變課件
- 40萬只全現代化蛋雞養(yǎng)殖場項目可行性研究報告寫作模板-申批備案
評論
0/150
提交評論