




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆福建省長汀一中高一下數(shù)學(xué)期末考試試題考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在△ABC中,sinA:sinB:sinC=4:3:2,則cosA的值是()A. B. C. D.2.如圖,飛機(jī)的航線和山頂在同一個(gè)鉛垂平面內(nèi),已知飛機(jī)的高度為海拔20000m,速度為900km/h,飛行員先看到山頂?shù)母┙菫?0°,經(jīng)過80s后又看到山頂?shù)母┙菫?5A.5000(3+1)C.5000(3-3)3.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}4.某校從高一年級學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.已知高一年級共有學(xué)生600名,據(jù)此估計(jì),該模塊測試成績不少于60分的學(xué)生人數(shù)為()A.588 B.480 C.450 D.1205.已知數(shù)列,如果,,,……,,……,是首項(xiàng)為1,公比為的等比數(shù)列,則=A. B. C. D.6.已知數(shù)列的前項(xiàng)為和,且,則()A.5 B. C. D.97.在中,內(nèi)角所對的邊分別為,且,則()A. B. C. D.8.已知,,是三條不同的直線,,是兩個(gè)不同的平面,則下列命題正確的是A.若,,,,,則B.若,,,,則C.若,,,,,則D.若,,,則9.已知實(shí)數(shù)滿足,則的取值范圍是()A. B. C. D.10.若直線始終平分圓的周長,則的最小值為()A. B.5 C.2 D.10二、填空題:本大題共6小題,每小題5分,共30分。11.對任意的θ∈0,π2,不等式112.5人排成一行合影,甲和乙不相鄰的排法有______種.(用數(shù)字回答)13.直線的傾斜角的大小是_________.14.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若Sn=(-1)nan-,n∈N,則a3=________.15.函數(shù)f(x)=log2(x+1)的定義域?yàn)開____.16.已知函數(shù),有以下結(jié)論:①若,則;②在區(qū)間上是增函數(shù);③的圖象與圖象關(guān)于軸對稱;④設(shè)函數(shù),當(dāng)時(shí),.其中正確的結(jié)論為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)數(shù)列的前項(xiàng)和為,若且求若數(shù)列滿足,求數(shù)列的前項(xiàng)和.18.已知函數(shù).(1)若在區(qū)間上的最小值為,求的值;(2)若存在實(shí)數(shù),使得在區(qū)間上單調(diào)且值域?yàn)椋蟮娜≈捣秶?9.泉州與福州兩地相距約200千米,一輛貨車從泉州勻速行駛到福州,規(guī)定速度不得超過千米/時(shí),已知貨車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度千米/時(shí)的平方成正比,比例系數(shù)為0.01;固定部分為64元.(1)把全程運(yùn)輸成本元表示為速度千米/時(shí)的函數(shù),并指出這個(gè)函數(shù)的定義域;(2)為了使全程運(yùn)輸成本最小,貨車應(yīng)以多大速度行駛?20.已知,.(1)計(jì)算及、;(2)設(shè),,,若,試求此時(shí)和滿足的函數(shù)關(guān)系式,并求的最小值.21.已知正項(xiàng)數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,.(Ⅰ)求證:數(shù)列是等差數(shù)列;(Ⅱ)求數(shù)列,的通項(xiàng)公式;(Ⅲ)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
由正弦定理可得,再結(jié)合余弦定理求解即可.【詳解】解:因?yàn)樵凇鰽BC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故選:A.【點(diǎn)睛】本題考查了正弦定理及余弦定理,重點(diǎn)考查了運(yùn)算能力,屬基礎(chǔ)題.2、C【解析】分析:先求AB的長,在△ABC中,可求BC的長,進(jìn)而由于CD⊥AD,所以CD=BCsin∠CBD,故可得山頂?shù)暮0胃叨龋斀猓喝鐖D,∠A=30°,∠ACB=45°,
AB=900×80×13600∴在△ABC中,BC=102∵CD⊥AD,=102sin30點(diǎn)睛:本題以實(shí)際問題為載體,考查正弦定理的運(yùn)用,關(guān)鍵是理解俯角的概念,屬于基礎(chǔ)題.3、D【解析】
根據(jù)并集定義計(jì)算.【詳解】由題意A∪B={x|-2<x<3}.故選D.【點(diǎn)睛】本題考查集合的并集運(yùn)算,屬于基礎(chǔ)題.4、B【解析】試題分析:根據(jù)頻率分布直方圖,得;該模塊測試成績不少于60分的頻率是1-(0.005+0.015)×10=0.8,∴對應(yīng)的學(xué)生人數(shù)是600×0.8=480考點(diǎn):頻率分布直方圖5、A【解析】分析:累加法求解。詳解:,,解得點(diǎn)睛:形如的模型,求通項(xiàng)公式,用累加法。6、D【解析】
先根據(jù)已知求出數(shù)列的通項(xiàng),再求解.【詳解】當(dāng)時(shí),,可得;當(dāng)且時(shí),,得,故數(shù)列為等比數(shù)列,首項(xiàng)為4,公比為2.所以所以.故選D【點(diǎn)睛】本題主要考查項(xiàng)和公式求數(shù)列通項(xiàng),考查等比數(shù)列的通項(xiàng)的求法,意在考查學(xué)生對這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.7、C【解析】
根據(jù)題目條件結(jié)合三角形的正弦定理以及三角形內(nèi)角和定理可得sinA,進(jìn)而利用二倍角余弦公式得到結(jié)果.【詳解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故選C【點(diǎn)睛】本題考查了正弦定理及二倍角余弦公式的靈活運(yùn)用,考查計(jì)算能力,屬于基礎(chǔ)題.8、D【解析】
逐一分析選項(xiàng),得到答案.【詳解】A.根據(jù)條件可知,若,不能推出;B.若,就不能推出;C.條件中沒有,所以不能推出;D.因?yàn)椋?,所以,因?yàn)?,所以.【點(diǎn)睛】本題考查了面面平行的判斷,屬于基礎(chǔ)題型,需要具有空間想象能力,以及邏輯推理能力.9、D【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.【詳解】由線性約束條件作出可行域,如下圖三角形陰影部分區(qū)域(含邊界),令,直線:,平移直線,當(dāng)過點(diǎn)時(shí)取得最大值,當(dāng)過點(diǎn)時(shí)取得最小值,所以的取值范圍是.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用.本題先正確的作出不等式組表示的平面區(qū)域,再結(jié)合目標(biāo)函數(shù)的幾何意義進(jìn)行解答是解決本題的關(guān)鍵.10、B【解析】試題分析:把圓的方程化為標(biāo)準(zhǔn)方程得,所以圓心坐標(biāo)為半徑,因?yàn)橹本€始終平分圓的周長,所以直線過圓的圓心,把代入直線得;即,在直線上,是點(diǎn)與點(diǎn)的距離的平方,因?yàn)榈街本€的距離,所以的最小值為,故選B.考點(diǎn):1、圓的方程及幾何性質(zhì);2、點(diǎn)到直線的距離公式及最值問題的應(yīng)用.【方法點(diǎn)晴】本題主要考查圓的方程及幾何性質(zhì)、點(diǎn)到直線的距離公式及最值問題的應(yīng)用,屬于難題.解決解析幾何的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是利用幾何意義,將的最小值轉(zhuǎn)化為點(diǎn)到直線的距離解答的.二、填空題:本大題共6小題,每小題5分,共30分。11、-4,5【解析】1sin2θ+4cos2點(diǎn)睛:在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤.12、72【解析】
先對其中3個(gè)人進(jìn)行全排列有種,再對甲和乙進(jìn)行插空有種,利用乘法原理得到排法總數(shù)為.【詳解】先對其中3個(gè)人進(jìn)行全排列有種,再對甲和乙進(jìn)行插空有種,利用乘法原理得到排法總數(shù)為種,故答案為72【點(diǎn)睛】本題考查排列、組合計(jì)數(shù)原理的應(yīng)用,考查基本運(yùn)算能力.13、【解析】試題分析:由題意,即,∴.考點(diǎn):直線的傾斜角.14、-【解析】當(dāng)n=3時(shí),S3=a1+a2+a3=-a3-,則a1+a2+2a3=-,當(dāng)n=4時(shí),S4=a1+a2+a3+a4=a4-,兩式相減得a3=-.15、{x|x>﹣1}【解析】
利用對數(shù)的真數(shù)大于,即可得解.【詳解】函數(shù)的定義域?yàn)椋?解得:,故答案為:.【點(diǎn)睛】本題主要考查對數(shù)函數(shù)定義域,考查學(xué)生對對數(shù)函數(shù)定義的理解,是基礎(chǔ)題.16、②③④【解析】
首先化簡函數(shù)解析式,逐一分析選項(xiàng),得到答案.【詳解】①當(dāng)時(shí),函數(shù)的周期為,,或,所以①不正確;②時(shí),,所以是增函數(shù),②正確;③函數(shù)還可以化簡為,所以與關(guān)于軸對稱,正確;④,當(dāng)時(shí),,,④正確故選②③④【點(diǎn)睛】本題考查了三角函數(shù)的化簡和三角函數(shù)的性質(zhì),屬于中檔題型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)由時(shí),,再驗(yàn)證適合,于是得出,再利用等差數(shù)列的求和公式可求出;(2)求出數(shù)列的通項(xiàng)公式,判斷出數(shù)列為等比數(shù)列,再利用等比數(shù)列的求和公式求出數(shù)列的前項(xiàng)和.【詳解】(1)當(dāng)且時(shí),;也適合上式,所以,,則數(shù)列為等差數(shù)列,因此,;(2),且,所以,數(shù)列是等比數(shù)列,且公比為,所以.【點(diǎn)睛】本題考查數(shù)列的前項(xiàng)和與數(shù)列通項(xiàng)的關(guān)系,考查等差數(shù)列與等比數(shù)列的求和公式,考查計(jì)算能力,屬于中等題.18、(1);(2).【解析】
(1)根據(jù)二次函數(shù)單調(diào)性討論即可解決.(2)分兩種情況討論,分別討論單調(diào)遞增和單調(diào)遞減的情況即可解決.【詳解】(1)若,即時(shí),,解得:,若,即時(shí),,解得:(舍去).(2)(?。┤粼谏蠁握{(diào)遞增,則,則,即是方程的兩個(gè)不同解,所以,即,且當(dāng)時(shí),要有,即,可得,所以;(ⅱ)若在上單調(diào)遞減,則,則,兩式相減得:,將代入(2)式,得,即是方程的兩個(gè)不同解,所以,即,且當(dāng)時(shí)要有,即,可得,所以,(iii)若對稱軸在上,則不單調(diào),舍棄.綜上,.【點(diǎn)睛】本題主要考查了二次函數(shù)的綜合問題,在解決二次函數(shù)問題時(shí)需要關(guān)注的是單調(diào)性、對稱軸、最值、開口、等屬于中等偏上的題.19、(1),;(2),貨車應(yīng)以千米/時(shí)速度行駛,貨車應(yīng)以千米/時(shí)速度行駛【解析】
(1)先計(jì)算出從泉州勻速行駛到福州所用時(shí)間,然后乘以每小時(shí)的運(yùn)輸成本(可變部分加固定部分),由此求得全程運(yùn)輸成本,并根據(jù)速度限制求得定義域.(2)由,,對進(jìn)行分類討論.當(dāng)時(shí),利用基本不等式求得行駛速度.當(dāng)時(shí),根據(jù)的單調(diào)性求得行駛速度.【詳解】(1)依題意一輛貨車從泉州勻速行駛到福州所用時(shí)間為小時(shí),全程運(yùn)輸成本為,所求函數(shù)定義域?yàn)?;?)當(dāng)時(shí),故有,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.當(dāng)時(shí),易證在上單調(diào)遞減故當(dāng)千米/時(shí),全程運(yùn)輸成本最小.綜上,為了使全程運(yùn)輸成本最小,,貨車應(yīng)以千米/時(shí)速度行駛,貨車應(yīng)以千米/時(shí)速度行駛.【點(diǎn)睛】本小題主要考查函數(shù)模型在實(shí)際生活中的應(yīng)用,考查基本不等式求最小值,考查函數(shù)的單調(diào)性,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.20、(1),,;(2),.【解析】
(1)根據(jù)數(shù)量積和模的坐標(biāo)運(yùn)算計(jì)算;(2)由可得出,然后由二次函數(shù)性質(zhì)求得最小值.【詳解】(1)由題意及,同理,.(2)∵,∴,∴,即,又,∴時(shí),.【點(diǎn)睛】本題考查向量的數(shù)量積與模的坐標(biāo)運(yùn)算,考查向量垂直與數(shù)量積的關(guān)系.掌
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 菜園土地承包經(jīng)營權(quán)評估合同范本
- 車輛運(yùn)輸與貨物裝卸方案合同
- Elasticsearch八大經(jīng)典應(yīng)用
- 2025年小學(xué)校長年終述職報(bào)告范文(19篇)
- 樂山建設(shè)工程施工合同協(xié)議(17篇)
- 2025學(xué)生會(huì)實(shí)踐部工作總結(jié)(15篇)
- 2025客服個(gè)人工作計(jì)劃范文(20篇)
- 公司合同管理規(guī)定(完整版)
- 音樂元素在詩歌中的運(yùn)用試題及答案
- 環(huán)境科學(xué)水環(huán)境化學(xué)試題集
- 2024年山東省德州市中考生物試題卷(含答案)
- 漿砌石擋墻 護(hù)坡施工方案
- 奔馳購車定金合同模板
- 廣東省佛山市南海區(qū)三水區(qū)2022-2023學(xué)年六年級下學(xué)期期末考試英語試卷
- 上海市上海民辦蘭生中學(xué)2024-2025學(xué)年八年級上學(xué)期9月第一次月考數(shù)學(xué)試題(無答案)
- 2024年10月自考試02899生理學(xué)部分真題含解析
- DB13-T 5834-2023 化工建設(shè)項(xiàng)目安裝工程質(zhì)量技術(shù)資料管理規(guī)范
- (作文指導(dǎo))狀動(dòng)人之景抒不盡之情-“沉浸式”課堂作文教學(xué)之環(huán)境描寫
- Unit 1 A New Start Using languages (Basic sentence structures) 教學(xué)設(shè)計(jì)-2024-2025學(xué)年高中英語外研版(2019)必修第一冊
- DL∕ T 969-2005 變電站運(yùn)行導(dǎo)則
- 六年級道德與法治畢業(yè)考試時(shí)政知識(shí)點(diǎn)(一)
評論
0/150
提交評論