2023-2024學年江蘇省無錫市惠山區(qū)中考適應性考試數學試題含解析_第1頁
2023-2024學年江蘇省無錫市惠山區(qū)中考適應性考試數學試題含解析_第2頁
2023-2024學年江蘇省無錫市惠山區(qū)中考適應性考試數學試題含解析_第3頁
2023-2024學年江蘇省無錫市惠山區(qū)中考適應性考試數學試題含解析_第4頁
2023-2024學年江蘇省無錫市惠山區(qū)中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省無錫市惠山區(qū)中考適應性考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,從正方形紙片的頂點沿虛線剪開,則∠1的度數可能是()A.44 B.45 C.46 D.472.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°3.下列運算正確的是()A.(a2)4=a6 B.a2?a3=a6 C. D.4.下列運算正確的是()A.a2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=65.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數為().A. B. C. D.6.如圖,四邊形ABCD是菱形,對角線AC,BD交于點O,,,于點H,且DH與AC交于G,則OG長度為A. B. C. D.7.山西有著悠久的歷史,遠在100多萬年前就有古人類生息在這塊土地上.春秋時期,山西大部分為晉國領地,故山西簡稱為“晉”,戰(zhàn)國初韓、趙、魏三分晉,山西又有“三晉”之稱,下面四個以“晉”字為原型的Logo圖案中,是軸對稱圖形的共有()A. B. C. D.8.3點40分,時鐘的時針與分針的夾角為()A.140° B.130° C.120° D.110°9.如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,按此規(guī)律,則第(n)個圖形中面積為1的正方形的個數為()A. B. C. D.10.下列因式分解正確的是A. B.C. D.11.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④12.一個幾何體的俯視圖如圖所示,其中的數字表示該位置上小正方體的個數,那么這個幾何體的主視圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線l1∥l2∥l3,直線AC分別交l1,l2,l3于點A,B,C;直線DF分別交l1,l2,l3于點D,E,F.AC與DF相交于點H,且AH=2,HB=1,BC=5,則DEEF的值為14.如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分是一個菱形,容易知道當兩張紙條垂直時,菱形的周長有最小值8,那么菱形周長的最大值是_________.15.如圖所示,△ABC的頂點是正方形網格的格點,則sinA的值為____.16.《孫子算經》是中國古代重要的數學著作,成書于約一千五百年前,其中有首歌謠:“今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問竿長幾何?”意思就是:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標桿(如圖所示),它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為_____.17.如圖,正方形ABCD中,AB=2,將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,連接BF,則圖中陰影部分的面積是_____.18.關于x的不等式組的整數解有4個,那么a的取值范圍()A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤4三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:()-1+()0+-2cos30°.20.(6分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點C.點F是圓O上異于B、C的動點,直線BF與l相交于點E,過點F作AF的垂線交直線BC于點D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動點F在什么位置時,相應的點D位于線段BC的延長線上,且使BC=CD,請說明你的理由.21.(6分)為了落實國務院的指示精神,某地方政府出臺了一系列“三農”優(yōu)惠政策,使農民收入大幅度增加.某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發(fā)現,該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+1.設這種產品每天的銷售利潤為w元.求w與x之間的函數關系式.該產品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?如果物價部門規(guī)定這種產品的銷售價不高于每千克28元,該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克多少元?22.(8分)為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協調,本市企業(yè)按成本價提供產品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件元,出廠價為每件元,每月銷售量(件)與銷售單價(元)之間的關系近似滿足一次函數:.李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔的總差價最少為多少元?23.(8分)已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.24.(10分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.(1)試判斷直線DE與CF的位置關系,并說明理由;(2)若∠A=30°,AB=4,求的長.25.(10分)已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E為的中點.求證:∠ACD=∠DEC;(2)延長DE、CB交于點P,若PB=BO,DE=2,求PE的長26.(12分)關于x的一元二次方程ax2+bx+1=1.當b=a+2時,利用根的判別式判斷方程根的情況;若方程有兩個相等的實數根,寫出一組滿足條件的a,b的值,并求此時方程的根.27.(12分)計算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

連接正方形的對角線,然后依據正方形的性質進行判斷即可.【詳解】解:如圖所示:∵四邊形為正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故選:A.【點睛】本題主要考查的是正方形的性質,熟練掌握正方形的性質是解題的關鍵.2、C【解析】

由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,由三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴,由折疊的性質得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.3、C【解析】

根據冪的乘方、同底數冪的乘法、二次根式的乘法、二次根式的加法計算即可.【詳解】A、原式=a8,所以A選項錯誤;B、原式=a5,所以B選項錯誤;C、原式=,所以C選項正確;D、與不能合并,所以D選項錯誤.故選:C.【點睛】本題考查了冪的乘方、同底數冪的乘法、二次根式的乘法、二次根式的加法,熟練掌握它們的運算法則是解答本題的關鍵.4、D【解析】

運用正確的運算法則即可得出答案.【詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【點睛】本題考查了四則運算法則,熟悉掌握是解決本題的關鍵.5、D【解析】

根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠1,再根據兩直線平行,同位角相等可得∠2=∠1.【詳解】如圖,由三角形的外角性質得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【點睛】本題考查了平行線的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.6、B【解析】試題解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.7、D【解析】

根據軸對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,故此選項錯誤;B、不是軸對稱圖形,故此選項錯誤;C、不是軸對稱圖形,故此選項錯誤;D、是軸對稱圖形,故此選項正確.

故選D.【點睛】此題主要考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、B【解析】

根據時針與分針相距的份數乘以每份的度數,可得答案.【詳解】解:3點40分時針與分針相距4+=份,30°×=130,故選B.【點睛】本題考查了鐘面角,確定時針與分針相距的份數是解題關鍵.9、C【解析】

由圖形可知:第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+n+1=.【詳解】第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個.【點睛】本題考查了規(guī)律的知識點,解題的關鍵是根據圖形的變化找出規(guī)律.10、D【解析】

直接利用提取公因式法以及公式法分解因式,進而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.11、B【解析】

由條件設AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數值可以求出∠EBC的度數和∠CEP的度數,則∠CEP=∠BEP,運用勾股定理及三角函數值就可以求出就可以求出BF、EF的值,從而可以求出結論.【詳解】解:設AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質的運用,相似三角形的判定及性質的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質的運用,解答時根據比例關系設出未知數表示出線段的長度是關鍵.12、A【解析】

一一對應即可.【詳解】最左邊有一個,中間有兩個,最右邊有三個,所以選A.【點睛】理解立體幾何的概念是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】試題解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考點:平行線分線段成比例.14、1【解析】

畫出圖形,設菱形的邊長為x,根據勾股定理求出周長即可.【詳解】當兩張紙條如圖所示放置時,菱形周長最大,設這時菱形的邊長為xcm,

在Rt△ABC中,

由勾股定理:x2=(8-x)2+22,

解得:x=,∴4x=1,

即菱形的最大周長為1cm.

故答案是:1.【點睛】解答關鍵是怎樣放置紙條使得到的菱形的周長最大,然后根據圖形列方程.15、.【解析】

解:連接CE,∵根據圖形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,∴CE⊥AB,∴sinA=,故答案為.考點:勾股定理;三角形的面積;銳角三角函數的定義.16、四丈五尺【解析】

根據同一時刻物高與影長成正比可得出結論.【詳解】解:設竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴=,解得x=45(尺).故答案為:四丈五尺.【點睛】本題考查的是相似三角形的應用,熟知同一時刻物髙與影長成正比是解答此題的關鍵.17、6﹣π【解析】過F作FM⊥BE于M,則∠FME=∠FMB=90°,

∵四邊形ABCD是正方形,AB=2,

∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,

由勾股定理得:BD=2,

∵將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,

∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,

∴BM=FM=2,ME=2,

∴陰影部分的面積=×2×2+×4×2+-=6-π.

故答案為:6-π.點睛:本題考查了旋轉的性質,解直角三角形,正方形的性質,扇形的面積計算等知識點,能求出各個部分的面積是解此題的關鍵.18、C【解析】分析:先根據一元一次不等式組解出x的取值,再根據不等式組的整數解有4個,求出實數a的取值范圍.詳解:解不等式①,得解不等式②,得原不等式組的解集為∵只有4個整數解,∴整數解為:故選C.點睛:考查解一元一次不等式組的整數解,分別解不等式,寫出不等式的解題,根據不等式整數解的個數,確定a的取值范圍.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、4+2.【解析】

原式第一項利用負指數冪法則計算,第二項利用零指數冪法則計算,第三項化為最簡二次根式,最后一項利用特殊角的三角函數值計算即可得到結果.【詳解】原式=3+1+3-2×=4+2.20、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解析】

(1)由直線l與以BC為直徑的圓O相切于點C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則可證得△CEF∽△BEC,然后根據相似三角形的對應邊成比例,即可求得EF的長;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根據同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,則可證得△CDF∽△BAF;②由△CDF∽△BAF與△CEF∽△BCF,根據相似三角形的對應邊成比例,易證得,又由AB=BC,即可證得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度數,則可得F在⊙O的下半圓上,且.【詳解】(1)解:∵直線l與以BC為直徑的圓O相切于點C.∴∠BCE=90°,又∵BC為直徑,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)證明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故為60°,∴F在直徑BC下方的圓弧上,且.【點睛】考查了相似三角形的判定與性質,圓的切線的性質,圓周角的性質以及三角函數的性質等知識.此題綜合性很強,解題的關鍵是方程思想與數形結合思想的應用.21、(1);(2)該產品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤2元;(3)該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克25元.【解析】

(1)根據銷售額=銷售量×銷售價單x,列出函數關系式.(2)用配方法將(2)的函數關系式變形,利用二次函數的性質求最大值.(3)把y=150代入(2)的函數關系式中,解一元二次方程求x,根據x的取值范圍求x的值.【詳解】解:(1)由題意得:,∴w與x的函數關系式為:.(2),∵﹣2<0,∴當x=30時,w有最大值.w最大值為2.答:該產品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤2元.(3)當w=150時,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.∵3>28,∴x2=3不符合題意,應舍去.答:該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克25元.22、(1)政府這個月為他承擔的總差價為644元;(2)當銷售單價定為34元時,每月可獲得最大利潤144元;(3)銷售單價定為25元時,政府每個月為他承擔的總差價最少為544元.【解析】試題分析:(1)把x=24代入y=﹣14x+544求出銷售的件數,然后求出政府承擔的成本價與出廠價之間的差價;(2)由利潤=銷售價﹣成本價,得w=(x﹣14)(﹣14x+544),把函數轉化成頂點坐標式,根據二次函數的性質求出最大利潤;(3)令﹣14x2+644x﹣5444=2,求出x的值,結合圖象求出利潤的范圍,然后設設政府每個月為他承擔的總差價為p元,根據一次函數的性質求出總差價的最小值.試題解析:(1)當x=24時,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府這個月為他承擔的總差價為644元;(2)依題意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴當x=34時,w有最大值144元.即當銷售單價定為34元時,每月可獲得最大利潤144元;(3)由題意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,拋物線開口向下,∴結合圖象可知:當24≤x≤1時,w≥2.又∵x≤25,∴當24≤x≤25時,w≥2.設政府每個月為他承擔的總差價為p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p隨x的增大而減小,∴當x=25時,p有最小值544元.即銷售單價定為25元時,政府每個月為他承擔的總差價最少為544元.考點:二次函數的應用.23、(3)a=,方程的另一根為;(2)答案見解析.【解析】

(3)把x=2代入方程,求出a的值,再把a代入原方程,進一步解方程即可;(2)分兩種情況探討:①當a=3時,為一元一次方程;②當a≠3時,利用b2-4ac=3求出a的值,再代入解方程即可.【詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當a=3時,方程為2x=3,解得:x=3.②當a≠3時,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當a=2時,原方程為:x2+2x+3=3,解得:x3=x2=-3;當a=3時,原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當a=3,3,2時,方程僅有一個根,分別為3,3,-3.考點:3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應用.24、(1)見解析;(2).【解析】

(1)先證明△OAC≌△ODC,得出∠1=∠2,則∠2=∠4,故OC∥DE,即可證得DE⊥CF;(2)根據OA=OC得到∠2=∠3=30°,故∠COD=120°,再根據弧長公式計算即可.【詳解】解:(1)DE⊥CF.理由如下:∵CF為切線,∴OC⊥CF,∵CA=CD,OA=OD,OC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論