北京市朝陽區(qū)北京八十中學新高考適應(yīng)性考試數(shù)學試卷及答案解析_第1頁
北京市朝陽區(qū)北京八十中學新高考適應(yīng)性考試數(shù)學試卷及答案解析_第2頁
北京市朝陽區(qū)北京八十中學新高考適應(yīng)性考試數(shù)學試卷及答案解析_第3頁
北京市朝陽區(qū)北京八十中學新高考適應(yīng)性考試數(shù)學試卷及答案解析_第4頁
北京市朝陽區(qū)北京八十中學新高考適應(yīng)性考試數(shù)學試卷及答案解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市朝陽區(qū)北京八十中學新高考適應(yīng)性考試數(shù)學試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列滿足且,則使的的值為()A. B. C. D.2.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項和,則()A. B. C. D.3.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為5的概率為A. B. C. D.4.設(shè),集合,則()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.6.由曲線圍成的封閉圖形的面積為()A. B. C. D.7.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.8.已知等式成立,則()A.0 B.5 C.7 D.139.已知且,函數(shù),若,則()A.2 B. C. D.10.命題“”的否定為()A. B.C. D.11.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.12.定義運算,則函數(shù)的圖象是().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三棱錐中,點是斜邊上一點.給出下列四個命題:①若平面,則三棱錐的四個面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內(nèi)心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號是__________.(把你認為正確命題的序號都填上)14.已知實數(shù),滿足約束條件則的最大值為________.15.某大學、、、四個不同的專業(yè)人數(shù)占本校總?cè)藬?shù)的比例依次為、、、,現(xiàn)欲采用分層抽樣的方法從這四個專業(yè)的總?cè)藬?shù)中抽取人調(diào)查畢業(yè)后的就業(yè)情況,則專業(yè)應(yīng)抽取_________人.16.已知函數(shù)的最小值為2,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點,求實數(shù)的取值范圍.18.(12分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.20.(12分)某精密儀器生產(chǎn)車間每天生產(chǎn)個零件,質(zhì)檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗,這些零件的長度服從正態(tài)分布(單位:微米),且相互獨立.若零件的長度滿足,則認為該零件是合格的,否則該零件不合格.(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學期望;(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當天生產(chǎn)零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機變量服從正態(tài)分布,則.21.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.22.(10分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),為數(shù)列的前項和,記,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.2、B【解析】

利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項和公式得【詳解】解:因為,由等差數(shù)列性質(zhì),若,則得,.為數(shù)列的前項和,則.故選:.【點睛】本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項和公式的靈活應(yīng)用,如.3、A【解析】

陽數(shù):,陰數(shù):,然后分析陰數(shù)和陽數(shù)差的絕對值為5的情況數(shù),最后計算相應(yīng)概率.【詳解】因為陽數(shù):,陰數(shù):,所以從陰數(shù)和陽數(shù)中各取一數(shù)差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.4、B【解析】

先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點睛】本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.5、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學問題,是求和還是求項.6、A【解析】

先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時注意積分區(qū)間和被積函數(shù)的選取.7、C【解析】

利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當時,,,故當時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎(chǔ).8、D【解析】

根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學運算能力.9、C【解析】

根據(jù)分段函數(shù)的解析式,知當時,且,由于,則,即可求出.【詳解】由題意知:當時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.10、C【解析】

套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎(chǔ)題.11、D【解析】

過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結(jié)合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設(shè)該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.12、A【解析】

由已知新運算的意義就是取得中的最小值,因此函數(shù),只有選項中的圖象符合要求,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】

對①,由線面平行的性質(zhì)可判斷正確;對②,三棱錐外接球可看作正方體的外接球,結(jié)合外接球半徑公式即可求解;對③,結(jié)合題意作出圖形,由勾股定理和內(nèi)接圓對應(yīng)面積公式求出錐體的高,則可求解;對④,由動點分析可知,當點與點重合時,直線與平面所成的角最大,結(jié)合幾何關(guān)系可判斷錯誤;【詳解】對于①,因為平面,所以,,,又,所以平面,所以,故四個面都是直角三角形,∴①正確;對于②,若,,,平面,∴三棱錐的外接球可以看作棱長為4的正方體的外接球,∴,,∴體積為,∴②正確;對于③,設(shè)內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對于④,∵若,平面,則直線與平面所成的角最大時,點與點重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點睛】本題考查立體幾何基本關(guān)系的應(yīng)用,線面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題14、1【解析】

作出約束條件表示的可行域,轉(zhuǎn)化目標函數(shù)為,當目標函數(shù)經(jīng)過點時,直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點的三角形及其內(nèi)部,轉(zhuǎn)化目標函數(shù)為當目標函數(shù)經(jīng)過點時,直線的截距最大此時取得最大值1.故答案為:1【點睛】本題考查了線性規(guī)劃問題,考查了學生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算能力,屬于基礎(chǔ)題.15、【解析】

求出專業(yè)人數(shù)在、、、四個專業(yè)總?cè)藬?shù)的比例后可得.【詳解】由題意、、、四個不同的專業(yè)人數(shù)的比例為,故專業(yè)應(yīng)抽取的人數(shù)為.故答案為:1.【點睛】本題考查分層抽樣,根據(jù)分層抽樣的定義,在各層抽取樣本數(shù)量是按比例抽取的.16、【解析】

首先利用絕對值的意義去掉絕對值符號,之后再結(jié)合后邊的函數(shù)解析式,對照函數(shù)值等于2的時候?qū)?yīng)的自變量的值,從而得到分段函數(shù)的分界點,從而得到相應(yīng)的等量關(guān)系式,求得參數(shù)的值.【詳解】根據(jù)題意可知,可以發(fā)現(xiàn)當或時是分界點,結(jié)合函數(shù)的解析式,可以判斷0不可能,所以只能是是分界點,故,解得,故答案是.【點睛】本題主要考查分段函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),函數(shù)最值的求解等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】

(1)利用導(dǎo)數(shù)的幾何意義求解即可;(2)利用導(dǎo)數(shù)得出的單調(diào)性以及極值,從而得出的圖象,將函數(shù)的零點問題轉(zhuǎn)化為函數(shù)圖象的交點問題,由圖,即可得出實數(shù)的取值范圍.【詳解】(1)當時,,∴切線斜率,又切點∴切線方程為,即.(2),記,令得;∴的情況如下表:2+0單調(diào)遞增極大值單調(diào)遞減當時,取極大值又時,;時,若沒有零點,即的圖像與直線無公共點,由圖像知的取值范圍是.【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的零點問題,屬于中檔題.18、;①;②.【解析】

根據(jù)題意列出方程組求解即可;①由原點為的垂心可得,軸,設(shè),則,,根據(jù)求出線段的長;②設(shè)中點為,直線與橢圓交于,兩點,為的重心,則,設(shè):,,,則,當斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據(jù)求解即可.【詳解】解:設(shè)焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設(shè),則,,,解得:或,,不重合,故,,故;②設(shè)中點為,直線與橢圓交于,兩點,為的重心,則,當斜率不存在時,則到直線的距離為1;設(shè):,,,則,,則,則:,,代入式子得:,設(shè)到直線的距離為,則時,;綜上,原點到直線距離的最小值為.【點睛】本題考查橢圓的方程的知識點,結(jié)合運用向量,韋達定理和點到直線的距離的知識,屬于難題.19、(1)(2)【解析】

(1)化簡得到,分類解不等式得到答案.(2)的最大值,,利用均值不等式計算得到答案.【詳解】(1)因為,故或或解得或,故不等式的解集為.(2)畫出函數(shù)圖像,根據(jù)圖像可知的最大值.因為,所以,當且僅當時,等號成立,故的最小值是3.【點睛】本題考查了解不等式,均值不等式求最值,意在考查學生的計算能力和轉(zhuǎn)化能力.20、(1)見解析(2)需要,見解析【解析】

(1)由零件的長度服從正態(tài)分布且相互獨立,零件的長度滿足即為合格,則每一個零件的長度合格的概率為,滿足二項分布,利用補集的思想求得,再根據(jù)公式求得;(2)由題可得不合格率為,檢查的成本為,求出不檢查時損失的期望,與成本作差,再與0比較大小即可判斷.【詳解】(1),由于滿足二項分布,故.(2)由題意可知不合格率為,若不檢查,損失的期望為;若檢查,成本為,由于,當充分大時,,所以為了使損失盡量小,小張需要檢查其余所有零件.【點睛】本題考查正態(tài)分布的應(yīng)用,考查二項分布的期望,考查補集思想的應(yīng)用,考查分析能力與數(shù)據(jù)處理能力.21、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】

運用數(shù)學歸納法證明即可得到結(jié)果化簡,運用累加法得出結(jié)果運用放縮法和累加法進行求證【詳解】(Ⅰ)數(shù)學歸納法證明時,①當時,成立;②當時,假設(shè)成立,則時所以時,成立綜上①②可知,時,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故【點睛】本題考查了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論