版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南師范大學(xué)實(shí)驗(yàn)中學(xué)高三第二次聯(lián)考新高考數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)()的圖象的大致形狀是()A. B. C. D.2.已知雙曲線的左、右焦點(diǎn)分別為,,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為()A. B. C. D.3.若函數(shù)在時(shí)取得最小值,則()A. B. C. D.4.如圖,在平行四邊形中,對角線與交于點(diǎn),且,則()A. B.C. D.5.一物體作變速直線運(yùn)動(dòng),其曲線如圖所示,則該物體在間的運(yùn)動(dòng)路程為()m.A.1 B. C. D.26.馬林●梅森是17世紀(jì)法國著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對2p﹣1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P﹣1(其中p是素?cái)?shù))的素?cái)?shù),稱為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是()A.3 B.4 C.5 D.67.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點(diǎn),則該點(diǎn)落在區(qū)域的概率為()A. B. C. D.8.已知雙曲線的一條漸近線為,圓與相切于點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.9.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知四棱錐的底面為矩形,底面,點(diǎn)在線段上,以為直徑的圓過點(diǎn).若,則的面積的最小值為()A.9 B.7 C. D.11.若直線的傾斜角為,則的值為()A. B. C. D.12.設(shè)集合,,則集合A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正三棱柱中,是的中點(diǎn),,則異面直線與所成的角為____.14.曲線在點(diǎn)處的切線方程為______.15.在中,已知是的中點(diǎn),且,點(diǎn)滿足,則的取值范圍是_______.16.已知數(shù)列的前項(xiàng)和為,,,,則滿足的正整數(shù)的所有取值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,其中.(1)當(dāng)時(shí),設(shè)函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.18.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.19.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.20.(12分)△ABC的內(nèi)角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.21.(12分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)記數(shù)列的前n項(xiàng)和為,,求數(shù)列的前n項(xiàng)和.22.(10分)已知,均為正項(xiàng)數(shù)列,其前項(xiàng)和分別為,,且,,,當(dāng),時(shí),,.(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.【點(diǎn)睛】識(shí)圖常用的方法(1)定性分析法:通過對問題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計(jì)算法:通過定量的計(jì)算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來分析解決問題.2、C【解析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個(gè)交點(diǎn).在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點(diǎn)睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識(shí),是一道中檔題.3、D【解析】
利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時(shí)的值.【詳解】解:,其中,,,故當(dāng),即時(shí),函數(shù)取最小值,所以,故選:D【點(diǎn)睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應(yīng)用,屬于基礎(chǔ)題.4、C【解析】
畫出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點(diǎn)睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個(gè)向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時(shí),合理選擇基底會(huì)給解題帶來方便.(2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.5、C【解析】
由圖像用分段函數(shù)表示,該物體在間的運(yùn)動(dòng)路程可用定積分表示,計(jì)算即得解【詳解】由題中圖像可得,由變速直線運(yùn)動(dòng)的路程公式,可得.所以物體在間的運(yùn)動(dòng)路程是.故選:C【點(diǎn)睛】本題考查了定積分的實(shí)際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.6、C【解析】
模擬程序的運(yùn)行即可求出答案.【詳解】解:模擬程序的運(yùn)行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時(shí),不滿足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是5,故選:C.【點(diǎn)睛】本題主要考查程序框圖,屬于基礎(chǔ)題.7、C【解析】
據(jù)題意可知,是與面積有關(guān)的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計(jì)算即可得答案.【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計(jì)算公式可得,故選:C.【點(diǎn)睛】本題主要考查了幾何概率的計(jì)算,本題是與面積有關(guān)的幾何概率模型.解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積.8、D【解析】
由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.9、B【解析】
由,可得,解出即可判斷出結(jié)論.【詳解】解:因?yàn)?,且.,解得.是的必要不充分條件.故選:.【點(diǎn)睛】本題考查了向量數(shù)量積運(yùn)算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.10、C【解析】
根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因?yàn)槠矫妫矫?,所?又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因?yàn)椋?dāng)且僅當(dāng),時(shí)等號(hào)成立,所以.故選:C.【點(diǎn)睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.11、B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計(jì)算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點(diǎn)睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.12、B【解析】
先求出集合和它的補(bǔ)集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補(bǔ)集和交集的運(yùn)算.對于有兩個(gè)根的一元二次不等式的解法是:先將二次項(xiàng)系數(shù)化為正數(shù),且不等號(hào)的另一邊化為,然后通過因式分解,求得對應(yīng)的一元二次方程的兩個(gè)根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
要求兩條異面直線所成的角,需要通過見中點(diǎn)找中點(diǎn)的方法,找出邊的中點(diǎn),連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點(diǎn)E,連AE,,易證,∴為異面直線與所成角,設(shè)等邊三角形邊長為,易算得∴在∴故答案為【點(diǎn)睛】本題考查異面直線所成的角,本題是一個(gè)典型的異面直線所成的角的問題,解答時(shí)也是應(yīng)用典型的見中點(diǎn)找中點(diǎn)的方法,注意求角的三個(gè)環(huán)節(jié),一畫,二證,三求.14、【解析】
對函數(shù)求導(dǎo),得出在處的一階導(dǎo)數(shù)值,即得出所求切線的斜率,再運(yùn)用直線的點(diǎn)斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點(diǎn)睛】本題考查運(yùn)用函數(shù)的導(dǎo)函數(shù)求函數(shù)在切點(diǎn)處的切線方程,關(guān)鍵在于求出在切點(diǎn)處的導(dǎo)函數(shù)值就是切線的斜率,屬于基礎(chǔ)題.15、【解析】
由中點(diǎn)公式的向量形式可得,即有,設(shè),有,再分別討論三點(diǎn)共線和不共線時(shí)的情況,找到的關(guān)系,即可根據(jù)函數(shù)知識(shí)求出范圍.【詳解】是的中點(diǎn),∴,即設(shè),于是(1)當(dāng)共線時(shí),因?yàn)椋偃酎c(diǎn)在之間,則,此時(shí),;②若點(diǎn)在的延長線上,則,此時(shí),.(2)當(dāng)不共線時(shí),根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.【點(diǎn)睛】本題主要考查學(xué)中點(diǎn)公式的向量形式和數(shù)量積的定義的應(yīng)用,以及余弦定理的應(yīng)用,涉及到函數(shù)思想和分類討論思想的應(yīng)用,解題關(guān)鍵是建立函數(shù)關(guān)系式,屬于中檔題.16、20,21【解析】
由題意知數(shù)列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗(yàn)即可.【詳解】解:由題意知數(shù)列的奇數(shù)項(xiàng)構(gòu)成公差為的等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時(shí),,.當(dāng)時(shí),,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列通項(xiàng)與求和公式,是綜合題,分清奇數(shù)項(xiàng)和偶數(shù)項(xiàng)是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極大值,無極小值;(2).(3)見解析【解析】
(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導(dǎo),再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問題得以解決;(3)取得到,取,可得,累加和根據(jù)對數(shù)的運(yùn)算性和放縮法即可證明.【詳解】解:(1)當(dāng)時(shí),設(shè)函數(shù),則令,解得當(dāng)時(shí),,當(dāng)時(shí),所以在上單調(diào)遞增,在上單調(diào)遞減所以當(dāng)時(shí),函數(shù)取得極大值,即極大值為,無極小值;(2)因?yàn)?,所以,因?yàn)樵趨^(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當(dāng)時(shí),在區(qū)間上恒成立,當(dāng)時(shí),,設(shè),則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所以,即綜上所述.(3)由(2)可知當(dāng)時(shí),函數(shù)在區(qū)間上遞增,所以,即,取,則.所以所以【點(diǎn)睛】此題考查了參數(shù)的取值范圍以及恒成立的問題,以及不等式的證明,構(gòu)造函數(shù)是關(guān)鍵,屬于較難題.18、(1)證明見解析;(2)【解析】
(1)要證明平面平面BDE,只需在平面內(nèi)找一條直線垂直平面BDE即可;(2)以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標(biāo)系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設(shè)AC,BD交于O,取BE的中點(diǎn)G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標(biāo)系∵BE與平面ABCD所成的角為,,,,,,.,設(shè)平面BEF的法向量為,,,設(shè)平面的法向量設(shè)二面角的大小為..【點(diǎn)睛】本題考查線面垂直證面面垂直、面面所成角的計(jì)算,考查學(xué)生的計(jì)算能力,解決此類問題最關(guān)鍵是準(zhǔn)確寫出點(diǎn)的坐標(biāo),是一道中檔題.19、(1)單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間(2)證明見解析【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù)判斷單調(diào)性,(2)整理,化簡為,令,求的單調(diào)性,以及,即證.【詳解】解:(1)函數(shù)定義域?yàn)椋瑒t,令,,則,當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間.(2)證明,即為,因?yàn)?,即證,令,則,令,則,當(dāng)時(shí),,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時(shí),,令,,,可知對于恒成立,即,即,故,即證,故原不等式得證.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,函數(shù)的最值問題,屬于中檔題.20、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計(jì)算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度股份代持與代管合同協(xié)議2篇
- 二零二五年度水利工程監(jiān)測與施工測量服務(wù)合同范本3篇
- 二零二五版新能源設(shè)備搬運(yùn)安裝合同細(xì)則3篇
- 2025年度航空航天器發(fā)動(dòng)機(jī)安裝與測試合同3篇
- 二零二五年度綠色交通設(shè)施招標(biāo)投標(biāo)合同6篇
- 展會(huì)參展資格合同(2篇)
- 二零二五版水利工程鋼筋加工與分包合同規(guī)范范本3篇
- 二零二五版室內(nèi)外景觀裝飾一體化合同3篇
- 2025年度文化演出活動(dòng)承辦合同3篇
- 二零二五版單位職工食堂員工健康體檢承包合同2篇
- 中建集團(tuán)面試自我介紹
- 《工業(yè)園區(qū)節(jié)水管理規(guī)范》
- 警校生職業(yè)生涯規(guī)劃
- 意識(shí)障礙患者的護(hù)理診斷及措施
- 2024版《53天天練單元?dú)w類復(fù)習(xí)》3年級(jí)語文下冊(統(tǒng)編RJ)附參考答案
- 2025企業(yè)年會(huì)盛典
- 215kWh工商業(yè)液冷儲(chǔ)能電池一體柜用戶手冊
- 場地平整施工組織設(shè)計(jì)-(3)模板
- 交通設(shè)施設(shè)備供貨及技術(shù)支持方案
- 美容美發(fā)店火災(zāi)應(yīng)急預(yù)案
- 餐車移動(dòng)食材配送方案
評論
0/150
提交評論