湖南省常德市武陵區(qū)芷蘭實(shí)驗(yàn)學(xué)校歷史班2025屆數(shù)學(xué)高一下期末預(yù)測(cè)試題含解析_第1頁(yè)
湖南省常德市武陵區(qū)芷蘭實(shí)驗(yàn)學(xué)校歷史班2025屆數(shù)學(xué)高一下期末預(yù)測(cè)試題含解析_第2頁(yè)
湖南省常德市武陵區(qū)芷蘭實(shí)驗(yàn)學(xué)校歷史班2025屆數(shù)學(xué)高一下期末預(yù)測(cè)試題含解析_第3頁(yè)
湖南省常德市武陵區(qū)芷蘭實(shí)驗(yàn)學(xué)校歷史班2025屆數(shù)學(xué)高一下期末預(yù)測(cè)試題含解析_第4頁(yè)
湖南省常德市武陵區(qū)芷蘭實(shí)驗(yàn)學(xué)校歷史班2025屆數(shù)學(xué)高一下期末預(yù)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省常德市武陵區(qū)芷蘭實(shí)驗(yàn)學(xué)校歷史班2025屆數(shù)學(xué)高一下期末預(yù)測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在如圖的正方體中,M、N分別為棱BC和棱的中點(diǎn),則異面直線AC和MN所成的角為()A. B. C. D.2.對(duì)具有線性相關(guān)關(guān)系的變量,有觀測(cè)數(shù)據(jù),已知它們之間的線性回歸方程是,若,則()A. B. C. D.3.已知向量,,,的夾角為45°,若,則()A. B. C.2 D.34.已知,,則()A. B. C. D.5.設(shè)集合,,若存在實(shí)數(shù)t,使得,則實(shí)數(shù)的取值范圍是()A. B. C. D.6.已知,兩條不同直線與的交點(diǎn)在直線上,則的值為()A.2 B.1 C.0 D.-17.已知數(shù)列的通項(xiàng)公式,前項(xiàng)和為,則關(guān)于數(shù)列、的極限,下面判斷正確的是()A.?dāng)?shù)列的極限不存在,的極限存在B.?dāng)?shù)列的極限存在,的極限不存在C.?dāng)?shù)列、的極限均存在,但極限值不相等D.?dāng)?shù)列、的極限均存在,且極限值相等8.已知等邊三角形ABC的邊長(zhǎng)為1,,那么().A.3 B.-3 C. D.9.?dāng)?shù)列{an}的通項(xiàng)公式是an=(n+2),那么在此數(shù)列中()A.a(chǎn)7=a8最大 B.a(chǎn)8=a9最大C.有唯一項(xiàng)a8最大 D.有唯一項(xiàng)a7最大10.直線的傾斜角的大小為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的部分圖像如圖所示,則的值為_(kāi)_______.12.設(shè),,則______.13.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為200,400,300,100件,為檢驗(yàn)產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進(jìn)行檢驗(yàn),則應(yīng)從丙種型號(hào)的產(chǎn)品中抽取________件.14.求值:_____.15.已知一圓錐的側(cè)面展開(kāi)圖為半圓,且面積為S,則圓錐的底面積是_______16.等比數(shù)列滿足其公比_________________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.(1)經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率.(3)某經(jīng)銷商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:A:所有芒果以10元/千克收購(gòu);B:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),高于或等于250克的以3元/個(gè)收購(gòu),通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?18.如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.已知,,,均為銳角,且.(1)求的值;(2)若,求的值.20.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn).(Ⅰ)求證:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說(shuō)明理由.21.設(shè).(1)用表示的最大值;(2)當(dāng)時(shí),求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

將平移到一起,根據(jù)等邊三角形的性質(zhì)判斷出兩條異面直線所成角的大小.【詳解】連接如下圖所示,由于分別是棱和棱的中點(diǎn),故,根據(jù)正方體的性質(zhì)可知,所以是異面直線所成的角,而三角形為等邊三角形,故.故選C.【點(diǎn)睛】本小題主要考查空間異面直線所成角的大小的求法,考查空間想象能力,屬于基礎(chǔ)題.2、A【解析】

先求出,再由線性回歸直線通過(guò)樣本中心點(diǎn)即可求出.【詳解】由題意,,因?yàn)榫€性回歸直線通過(guò)樣本中心點(diǎn),將代入可得,所以.故選:A.【點(diǎn)睛】本題主要考查線性回歸直線通過(guò)樣本中心點(diǎn)這一知識(shí)點(diǎn)的應(yīng)用,屬常規(guī)考題.3、C【解析】

利用向量乘法公式得到答案.【詳解】向量,,,的夾角為45°故答案選C【點(diǎn)睛】本題考查了向量的運(yùn)算,意在考查學(xué)生的計(jì)算能力.4、C【解析】

利用二倍角公式變形為,然后利用弦化切的思想求出的值,可得出角的值.【詳解】,化簡(jiǎn)得,,則,,因此,,故選C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查弦切互化思想的應(yīng)用,考查給值求角的問(wèn)題,著重考查學(xué)生對(duì)三角恒等變換思想的應(yīng)用能力,屬于中等題.5、C【解析】

得到圓心距與半徑和差關(guān)系得到答案.【詳解】圓心距存在實(shí)數(shù)t,使得故答案選C【點(diǎn)睛】本題考查了兩圓的位置關(guān)系,意在考查學(xué)生的計(jì)算能力.6、C【解析】

聯(lián)立方程求交點(diǎn),根據(jù)交點(diǎn)在在直線上,得到三角關(guān)系式,化簡(jiǎn)得到答案.【詳解】交點(diǎn)在直線上觀察分母和不是恒相等故故答案選C【點(diǎn)睛】本題考查了直線方程,三角函數(shù)運(yùn)算,意在考查學(xué)生的計(jì)算能力.7、D【解析】

分別考慮與的極限,然后作比較.【詳解】因?yàn)?,又,所以?shù)列、的極限均存在,且極限值相等,故選D.【點(diǎn)睛】本題考查數(shù)列的極限的是否存在的判斷以及計(jì)算,難度一般.注意求解的極限時(shí),若是分段數(shù)列求和的形式,一定要將多段數(shù)列均考慮到.8、D【解析】

利用向量的數(shù)量積即可求解.【詳解】解析:.故選:D【點(diǎn)睛】本題考查了向量的數(shù)量積,注意向量夾角的定義,屬于基礎(chǔ)題.9、A【解析】,所以,令,解得n≤7,即n≤7時(shí)遞增,n>7遞減,所以a1<a2<a3<…<a7=a8>a9>….所以a7=a8最大.本題選擇A選項(xiàng).10、B【解析】

由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由圖可得,,求出,得出,利用,然后化簡(jiǎn)即可求解【詳解】由題圖知,,所以,所以.由正弦函數(shù)的對(duì)稱性知,所以答案:【點(diǎn)睛】本題利用函數(shù)的周期特性求解,難點(diǎn)在于通過(guò)圖像求出函數(shù)的解析式和函數(shù)的最小正周期,屬于基礎(chǔ)題12、【解析】

由,根據(jù)兩角差的正切公式可解得.【詳解】,故答案為【點(diǎn)睛】本題主要考查了兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)知識(shí)的考查.13、1【解析】應(yīng)從丙種型號(hào)的產(chǎn)品中抽取件,故答案為1.點(diǎn)睛:在分層抽樣的過(guò)程中,為了保證每個(gè)個(gè)體被抽到的可能性是相同的,這就要求各層所抽取的個(gè)體數(shù)與該層所包含的個(gè)體數(shù)之比等于樣本容量與總體的個(gè)體數(shù)之比,即ni∶Ni=n∶N.14、【解析】

根據(jù)同角三角函數(shù)的基本關(guān)系:,以及反三角函數(shù)即可解決?!驹斀狻坑深}意.故答案為:.【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,同角角三角函數(shù)基本關(guān)系主要有:,.屬于基礎(chǔ)題。15、【解析】

由已知中圓錐的側(cè)面展開(kāi)圖為半圓且面積為S,我們易確定圓錐的母線長(zhǎng)l與底面半徑R之間的關(guān)系,進(jìn)而求出底面面積即可得到結(jié)論.【詳解】如圖:設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R若圓錐的側(cè)面展開(kāi)圖為半圓則2πR=πl(wèi),即l=2R,又∵圓錐的側(cè)面展開(kāi)圖為半圓且面積為S,則圓錐的底面面積是.故答案為.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是圓錐的表面積,根據(jù)圓錐的側(cè)面展開(kāi)圖為半圓,確定圓錐的母線長(zhǎng)與底面的關(guān)系是解答本題的關(guān)鍵.16、【解析】

觀察式子,將兩式相除即可得到答案.【詳解】根據(jù)題意,可知,于是.【點(diǎn)睛】本題主要考查等比數(shù)列公比的相關(guān)計(jì)算,難度很小.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)中位數(shù)為268.75;(2);(3)選B方案【解析】

(1)根據(jù)中位數(shù)左右兩邊的頻率均為0.5求解即可.(2)利用枚舉法求出所以可能的情況,再利用古典概型方法求解概率即可.(3)分別計(jì)算兩種方案的獲利再比較大小即可.【詳解】(1)由頻率分布直方圖可得,前3組的頻率和為,前4組的頻率和為,所以中位數(shù)在內(nèi),設(shè)中位數(shù)為,則有,解得.故中位數(shù)為268.75.(2)設(shè)質(zhì)量在內(nèi)的4個(gè)芒果分別為,,,,質(zhì)量在內(nèi)的2個(gè)芒果分別為,.從這6個(gè)芒果中選出3個(gè)的情況共有,,,,,,,,,,,,,,,,,,,,共計(jì)20種,其中恰有一個(gè)在內(nèi)的情況有,,,,,,,,,,,,共計(jì)12種,因此概率.(3)方案A:元.方案B:由題意得低于250克:元;高于或等于250克元.故總計(jì)元,由于,故B方案獲利更多,應(yīng)選B方案.【點(diǎn)睛】本題主要考查了頻率分布直方圖的用法以及古典概型的方法,同時(shí)也考查了根據(jù)樣本估計(jì)總體的方法等.屬于中等題型.18、(1)見(jiàn)解析(2)見(jiàn)解析【解析】試題分析:(1)先由平面幾何知識(shí)證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內(nèi),因?yàn)锳B⊥AD,,所以.又因?yàn)槠矫鍭BC,平面ABC,所以EF∥平面ABC.(2)因?yàn)槠矫鍭BD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因?yàn)槠矫?,所?又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因?yàn)锳C平面ABC,所以AD⊥AC.點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見(jiàn)類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(1);(2)【解析】

(1)計(jì)算表達(dá)出,再根據(jù),兩邊平方求化簡(jiǎn)即可求得.(2)根據(jù),再利用余弦的差角公式展開(kāi)后分別計(jì)算求解即可.【詳解】(1)由題意,得,,,,.(2),,均為銳角,仍為銳角,,,.【點(diǎn)睛】本題主要考查了根據(jù)向量的數(shù)量積列出關(guān)于三角函數(shù)的等式,再利用三角函數(shù)中的和差角以及湊角求解的方法.屬于中檔題.20、(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析;(Ⅲ)見(jiàn)解析.【解析】

(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;(Ⅱ)由幾何體的空間結(jié)構(gòu)特征首先證得線面垂直,然后利用面面垂直的判斷定理可得面面垂直;(Ⅲ)由題意,利用平行四邊形的性質(zhì)和線面平行的判定定理即可找到滿足題意的點(diǎn).【詳解】(Ⅰ)證明:因?yàn)槠矫?所以;因?yàn)榈酌媸橇庑?,所?因?yàn)?平面,所以平面.(Ⅱ)證明:因?yàn)榈酌媸橇庑吻?,所以為正三角形,所?因?yàn)?所以;因?yàn)槠矫妫矫?所以;因?yàn)樗云矫?,平?所以平面平面.(Ⅲ)存在點(diǎn)為中點(diǎn)時(shí),滿足平面;理由如下:分別取的中點(diǎn),連接,在三角形中,且;在菱形中,為中點(diǎn),所以且,所以且,即四邊形為平行四邊形,所以;又平面,平面,所以平面.【點(diǎn)睛】本題主要考查線面

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論