版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
內(nèi)蒙古錫林郭勒市2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)全集,集合,,則()A. B. C. D.2.已知數(shù)列{an}的前n項和Sn=3n(λ-n)-6,若數(shù)列{an}單調(diào)遞減,則λ的取值范圍是A.(-∞,2) B.(-∞,3) C.(-∞,4) D.(-∞,5)3.化簡的結(jié)果是()A. B. C. D.4.已知在中,兩直角邊,,是內(nèi)一點,且,設(shè),則()A. B. C.3 D.5.過點且與直線平行的直線方程是()A. B.C. D.6.已知數(shù)列是公比不為1的等比數(shù)列,為其前n項和,滿足,且成等差數(shù)列,則()A. B.6 C.7 D.97.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐P﹣ABCD為陽馬,側(cè)棱PA⊥底面ABCD,PA=AB=AD,E為棱PA的中點,則異面直線AB與CE所成角的正弦值為()A. B. C. D.8.已知向量,且,則()A. B. C. D.9.如圖所示,從氣球上測得正前方的河流的兩岸,的俯角分別為,,此時氣球的高度是60m,則河流的寬度等于()A.m B.m C.m D.m10.過點且與圓相切的直線方程為()A. B.或C.或 D.或二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列滿足:(且為常數(shù)),,當(dāng)時,則數(shù)列的前項的和為________.12.設(shè)y=f(x)是定義域為R的偶函數(shù),且它的圖象關(guān)于點(2,0)對稱,若當(dāng)x∈(0,2)時,f(x)=x2,則f(19)=_____13.在等差數(shù)列中,,,則的值為_______.14.函數(shù)的值域為_____________.15.若,則__________.(結(jié)果用反三角函數(shù)表示)16.已知等差數(shù)列滿足,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)已知,,且、都是第二象限角,求的值.(2)求證:.18.已知在三棱錐S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求證:AD⊥平面SBC.19.已知函數(shù).(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)求在區(qū)間上的最大值和最小值.20.在平面直角坐標(biāo)系中,點是坐標(biāo)原點,已知點為線段上靠近點的三等分點.求點的坐標(biāo):若點在軸上,且直線與直線垂直,求點的坐標(biāo).21.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;(2)求函數(shù)在區(qū)間上的最小值以及取得該最小值時的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
先求得集合的補(bǔ)集,然后求其與集合的交集,由此得出正確選項.【詳解】依題意,所以,故選D.【點睛】本小題主要考查集合補(bǔ)集、交集的概念和運(yùn)算,屬于基礎(chǔ)題.2、A【解析】
,,因為單調(diào)遞減,所以,所以,且,所以只需,,且,所以,故選A.3、A【解析】
根據(jù)平面向量加法及數(shù)乘的幾何意義,即可求解,得到答案.【詳解】根據(jù)平面向量加法及數(shù)乘的幾何意義,可得,故選A.【點睛】本題主要考查了平面向量的加法法則的應(yīng)用,其中解答中熟記平面向量的加法法則是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、A【解析】分析:建立平面直角坐標(biāo)系,分別寫出B、C點坐標(biāo),由于∠DAB=60°,設(shè)D點坐標(biāo)為(m,),由平面向量坐標(biāo)表示,可求出λ和μ.詳解:如圖以A為原點,以AB所在的直線為x軸,以AC所在的直線為y軸建立平面直角坐標(biāo)系,則B點坐標(biāo)為(1,0),C點坐標(biāo)為(0,2),因為∠DAB=60°,設(shè)D點坐標(biāo)為(m,),=λ(1,0)+μ(0,2)=(λ,2μ)?λ=m,μ=,則.故選A.點睛:本題主要考察平面向量的坐標(biāo)表示,根據(jù)條件建立平面直角坐標(biāo)系,分別寫出各點坐標(biāo),屬于中檔題.5、D【解析】
先由題意設(shè)所求直線為:,再由直線過點,即可求出結(jié)果.【詳解】因為所求直線與直線平行,因此,可設(shè)所求直線為:,又所求直線過點,所以,解得,所求直線方程為:.故選:D【點睛】本題主要考查求直線的方程,熟記直線方程的常見形式即可,屬于基礎(chǔ)題型.6、C【解析】
設(shè)等比數(shù)列的公比為,且不為1,由等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式,解方程可得首項和公比,再由等比數(shù)列的求和公式,可得答案.【詳解】數(shù)列是公比不為l的等比數(shù)列,滿足,即且成等差數(shù)列,得,即,解得,則.故選:C.【點睛】本題考查等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式和求和公式的運(yùn)用,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.7、B【解析】
由異面直線所成角的定義及求法,得到為所求,連接,由為直角三角形,即可求解.【詳解】在四棱錐中,,可得即為異面直線與所成角,連接,則為直角三角形,不妨設(shè),則,所以,故選B.【點睛】本題主要考查了異面直線所成角的作法及求法,其中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8、A【解析】
直接利用向量平行的充要條件列方程求解即可.【詳解】由可得到.故選A【點睛】利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.9、A【解析】
在直角三角形中,利用銳角三角函數(shù)求出的長,在直角三角形中,利用銳角三角函數(shù)求出的長,最后利用進(jìn)行求解即可.【詳解】在直角三角形中,.在直角三角形中,.所以有.故選:A【點睛】本題考查了銳角三角函數(shù)的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.10、C【解析】
分別考慮斜率存在和不存在兩種情況得到答案.【詳解】如圖所示:當(dāng)斜率不存在時:當(dāng)斜率存在時:設(shè)故答案選C【點睛】本題考查了圓的切線問題,忽略掉斜率不存在是容易發(fā)生的錯誤.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
直接利用分組法和分類討論思想求出數(shù)列的和.【詳解】數(shù)列滿足:(且為常數(shù)),,當(dāng)時,則,所以(常數(shù)),故,所以數(shù)列的前項為首項為,公差為的等差數(shù)列.從項開始,由于,所以奇數(shù)項為、偶數(shù)項為,所以,故答案為:【點睛】本題考查了由遞推關(guān)系式求數(shù)列的性質(zhì)、等差數(shù)列的前項和公式,需熟記公式,同時也考查了分類討論的思想,屬于中檔題.12、﹣1.【解析】
根據(jù)題意,由函數(shù)的奇偶性與對稱性分析可得,即函數(shù)是周期為的周期函數(shù),據(jù)此可得,再由函數(shù)的解析式計算即可.【詳解】根據(jù)題意,是定義域為的偶函數(shù),則,又由得圖象關(guān)于點對稱,則,所以,即函數(shù)是周期為的周期函數(shù),所以,又當(dāng)時,,則,所以.故答案為:.【點睛】本題考查函數(shù)的奇偶性與周期性的性質(zhì)以及應(yīng)用,注意分析函數(shù)的周期性,屬于基礎(chǔ)題.13、.【解析】
設(shè)等差數(shù)列的公差為,根據(jù)題中條件建立、的方程組,求出、的值,即可求出的值.【詳解】設(shè)等差數(shù)列的公差為,所以,解得,因此,,故答案為:.【點睛】本題考查等差數(shù)列的項的計算,常利用首項和公差建立方程組,結(jié)合通項公式以及求和公式進(jìn)行計算,考查方程思想,屬于基礎(chǔ)題.14、【解析】
分析函數(shù)在區(qū)間上的單調(diào)性,由此可求出該函數(shù)在區(qū)間上的值域.【詳解】由于函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),所以,函數(shù)在區(qū)間上也為增函數(shù),且,,當(dāng)時,,因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,解題的關(guān)鍵就是判斷出函數(shù)的單調(diào)性,考查分析問題和解決問題的能力,屬于中等題.15、;【解析】
由條件利用反三角函數(shù)的定義和性質(zhì)即可求解.【詳解】,則,故答案為:【點睛】本題考查了反三角函數(shù)的定義和性質(zhì),屬于基礎(chǔ)題.16、【解析】
由等差數(shù)列的性質(zhì)計算.【詳解】∵是等差數(shù)列,∴,∴.故答案為:1.【點睛】本題考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.等差數(shù)列的性質(zhì)如下:在等差數(shù)列中,,則.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)利用同角三角函數(shù)間的關(guān)系式的應(yīng)用,可求得cosα,sinβ,再利用兩角差的正弦、余弦與正切公式即可求得cos(α﹣β)的值.(2)利用切化弦結(jié)合二倍角公式化簡即可證明【詳解】(1)∵sinα,cosβ,且α、β都是第二象限的角,∴cosα,sinβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ;(2)得證【點睛】本題考查兩角和與差的正弦、余弦與正切,考查同角三角函數(shù)間的關(guān)系式的應(yīng)用,屬于中檔題.18、證明見解析【解析】
先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【詳解】證明:因為SA⊥面ABC,BC面ABC,所以BC⊥SA;又由∠ACB=,得BC⊥AC,且AC、SA是面SAC內(nèi)的兩相交線,所以BC⊥面SAC;又AD面SAC,所以BC⊥AD,又已知SC⊥AD,且BC、SC是面SBC內(nèi)兩相交線,所以AD⊥面SBC.【點睛】本題考查了線面垂直的證明與性質(zhì),屬于基礎(chǔ)題.19、(1);單調(diào)遞增區(qū)間為:;(2)最大值;最小值.【解析】
(1)先將函數(shù)化簡整理,得到,由得到最小正周期;根據(jù)正弦函數(shù)的對稱軸,即可列式,求出對稱軸;(2)先由,得到,根據(jù)正弦函數(shù)的性質(zhì),即可得出結(jié)果.【詳解】(1)因為,所以最小正周期為:;由得,即單調(diào)遞增區(qū)間是:;(2)因為,所以,因此,當(dāng)即時,取最小值;當(dāng)即時,取最大值;【點睛】本題主要考查正弦型三角函數(shù)的周期、對稱軸,以及給定區(qū)間的最值問題,熟記正弦函數(shù)的性質(zhì),以及輔助角公式即可,屬于??碱}型.20、(1)(2)【解析】
(1)由題意利用線段的定比分點坐標(biāo)公式,兩個向量坐標(biāo)形式的運(yùn)算法則,求出點P的坐標(biāo).(2)由題意利用兩個向量垂直的性質(zhì),兩個向量坐標(biāo)形式的運(yùn)算法則,求出點Q的坐標(biāo).【詳解】設(shè),因為,所以,又,所以,解得,從而.設(shè),所以,由已知直線與直線垂直,所以則,解得,所以.【點睛】本題主要考查了線段的定比分點坐標(biāo)公式,兩個向量垂直的性質(zhì),兩個向量坐標(biāo)形式的運(yùn)算,屬于基礎(chǔ)題,著重考查了推理與運(yùn)算能力.21、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2)當(dāng)時,函數(shù)取最小值.【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版油氣田鉆井技術(shù)服務(wù)質(zhì)量承包合同3篇
- 2025年度環(huán)保型廠房設(shè)計與施工總承包合同3篇
- 二零二四年在線教育平臺軟件全國代理銷售合同模板2篇
- 2025年度全國范圍內(nèi)土地測繪技術(shù)服務(wù)合同范文3篇
- 2024版液化天然氣交易協(xié)議全文下載版B版
- 2024版運(yùn)輸行業(yè)職員勞動協(xié)議樣本
- 2024年地基買賣合同附帶地基檢測及質(zhì)量認(rèn)證3篇
- 2025年大棚農(nóng)業(yè)綠色生產(chǎn)技術(shù)引進(jìn)合同3篇
- 2025年度綠色建筑:知識產(chǎn)權(quán)許可與環(huán)保建材合同3篇
- 2025年智慧能源物業(yè)工程承包及節(jié)能服務(wù)合同3篇
- 2024版塑料購銷合同范本買賣
- 【高一上】【期末話收獲 家校話未來】期末家長會
- JJF 2184-2025電子計價秤型式評價大綱(試行)
- GB/T 44890-2024行政許可工作規(guī)范
- 有毒有害氣體崗位操作規(guī)程(3篇)
- 兒童常見呼吸系統(tǒng)疾病免疫調(diào)節(jié)劑合理使用專家共識2024(全文)
- 2025屆山東省德州市物理高三第一學(xué)期期末調(diào)研模擬試題含解析
- 《華潤集團(tuán)全面預(yù)算管理案例研究》
- 二年級下冊加減混合豎式練習(xí)360題附答案
- 異地就醫(yī)備案個人承諾書
- 蘇教版五年級數(shù)學(xué)下冊解方程五種類型50題
評論
0/150
提交評論