齊齊哈爾市重點中學2024屆中考數(shù)學押題卷含解析_第1頁
齊齊哈爾市重點中學2024屆中考數(shù)學押題卷含解析_第2頁
齊齊哈爾市重點中學2024屆中考數(shù)學押題卷含解析_第3頁
齊齊哈爾市重點中學2024屆中考數(shù)學押題卷含解析_第4頁
齊齊哈爾市重點中學2024屆中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

齊齊哈爾市重點中學2024屆中考數(shù)學押題卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,這是根據(jù)某班40名同學一周的體育鍛煉情況繪制的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,可得到該班40名同學一周參加體育鍛煉時間的眾數(shù)、中位數(shù)分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.52.一、單選題小明和小張兩人練習電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.3.如果數(shù)據(jù)x1,x2,…,xn的方差是3,則另一組數(shù)據(jù)2x1,2x2,…,2xn的方差是()A.3 B.6 C.12 D.54.某城市幾條道路的位置關系如圖所示,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長度相等,則∠C的度數(shù)為()A.48° B.40° C.30° D.24°5.如圖,在△ABC中,點D、E分別在邊AB、AC的反向延長線上,下面比例式中,不能判定ED//BC的是()A. B.C. D.6.如圖,是由7個大小相同的小正方體堆砌而成的幾何體,若從標有①、②、③、④的四個小正方體中取走一個后,余下幾何體與原幾何體的主視圖相同,則取走的正方體是()A.① B.② C.③ D.④7.關于的不等式的解集如圖所示,則的取值是A.0 B. C. D.8.不等式3x≥x-5的最小整數(shù)解是()A.-3 B.-2 C.-1 D.29.如圖,△ABC內接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點,CD與AB的交點為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:210.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.A.如果一個正多邊形的一個外角是45°,那么這個正多邊形對角線的條數(shù)一共有_____條.B.用計算器計算:?tan63°27′≈_____(精確到0.01).12..如圖,圓錐側面展開得到扇形,此扇形半徑CA=6,圓心角∠ACB=120°,則此圓錐高OC的長度是_______.13.已知反比例函數(shù)的圖像經(jīng)過點,那么的值是__.14.不等式組的解是____.15.如圖,在矩形ABCD中,E、F分別是AD、CD的中點,沿著BE將△ABE折疊,點A剛好落在BF上,若AB=2,則AD=________.16.分解因式:x2﹣4=_____.三、解答題(共8題,共72分)17.(8分)如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(A在B的左側),與),軸交于點C.拋物線的對稱軸是直線x=﹣2,D是拋物線的頂點.(1)求二次函數(shù)的表達式;(2)當﹣<x<1時,請求出y的取值范圍;(3)連接AD,線段OC上有一點E,點E關于直線x=﹣2的對稱點E'恰好在線段AD上,求點E的坐標.18.(8分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE弧.求證:AB為⊙C的切線.求圖中陰影部分的面積.19.(8分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關系,并說明理由;(2)若AD=2,AC=,求AB的長.20.(8分)為了貫徹“減負增效”精神,掌握九年級600名學生每天的自主學習情況,某校學生會隨機抽查了九年級的部分學生,并調查他們每天自主學習的時間.根據(jù)調查結果,制作了兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據(jù)統(tǒng)計圖中的信息回答下列問題:(1)本次調查的學生人數(shù)是人;(2)圖2中α是度,并將圖1條形統(tǒng)計圖補充完整;(3)請估算該校九年級學生自主學習時間不少于1.5小時有人;(4)老師想從學習效果較好的4位同學(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學習經(jīng)驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.21.(8分)如圖,在平面直角坐標系中,圓M經(jīng)過原點O,直線與x軸、y軸分別相交于A,B兩點.(1)求出A,B兩點的坐標;(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在圓M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;(3)設(2)中的拋物線交軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.22.(10分)為更精準地關愛留守學生,某學校將留守學生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學校.某數(shù)學小組隨機調查了一個班級,發(fā)現(xiàn)該班留守學生數(shù)量占全班總人數(shù)的20%,并將調查結果制成如下兩幅不完整的統(tǒng)計圖.該班共有名留守學生,B類型留守學生所在扇形的圓心角的度數(shù)為;將條形統(tǒng)計圖補充完整;已知該校共有2400名學生,現(xiàn)學校打算對D類型的留守學生進行手拉手關愛活動,請你估計該校將有多少名留守學生在此關愛活動中受益?23.(12分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.求小明選擇去白鹿原游玩的概率;用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.24.丁老師為了解所任教的兩個班的學生數(shù)學學習情況,對數(shù)學進行了一次測試,獲得了兩個班的成績(百分制),并對數(shù)據(jù)(成績)進行整理、描述和分析,下面給出了部分信息.①A、B兩班學生(兩個班的人數(shù)相同)數(shù)學成績不完整的頻數(shù)分布直方圖如下(數(shù)據(jù)分成5組:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B兩班學生測試成績在80≤x<90這一組的數(shù)據(jù)如下:A班:80808283858586878787888989B班:80808181828283848485858686868787878787888889③A、B兩班學生測試成績的平均數(shù)、中位數(shù)、方差如下:平均數(shù)中位數(shù)方差A班80.6m96.9B班80.8n153.3根據(jù)以上信息,回答下列問題:補全數(shù)學成績頻數(shù)分布直方圖;寫出表中m、n的值;請你對比分析A、B兩班學生的數(shù)學學習情況(至少從兩個不同的角度分析).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)中位數(shù)、眾數(shù)的概念分別求得這組數(shù)據(jù)的中位數(shù)、眾數(shù).【詳解】解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),即8;而將這組數(shù)據(jù)從小到大的順序排列后,處于20,21兩個數(shù)的平均數(shù),由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是9.故選A.【點睛】考查了中位數(shù)、眾數(shù)的概念.本題為統(tǒng)計題,考查眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會錯誤地將這組數(shù)據(jù)最中間的那個數(shù)當作中位數(shù).2、C【解析】

解:因為設小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據(jù)關系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【點睛】本題考查列分式方程解應用題,找準題目中的等量關系,難度不大.3、C【解析】【分析】根據(jù)題意,數(shù)據(jù)x1,x2,…,xn的平均數(shù)設為a,則數(shù)據(jù)2x1,2x2,…,2xn的平均數(shù)為2a,再根據(jù)方差公式進行計算:即可得到答案.【詳解】根據(jù)題意,數(shù)據(jù)x1,x2,…,xn的平均數(shù)設為a,則數(shù)據(jù)2x1,2x2,…,2xn的平均數(shù)為2a,根據(jù)方差公式:=3,則==4×=4×3=12,故選C.【點睛】本題主要考查了方差公式的運用,關鍵是根據(jù)題意得到平均數(shù)的變化,再正確運用方差公式進行計算即可.4、D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=∠1=×48°=24°.故選D.點睛:本題考查了等腰三角形的性質,平行線的性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.5、C【解析】

根據(jù)平行線分線段成比例定理推理的逆定理,對各選項進行逐一判斷即可.【詳解】A.當時,能判斷;B.

當時,能判斷;C.

當時,不能判斷;D.

當時,,能判斷.故選:C.【點睛】本題考查平行線分線段成比例定理推理的逆定理,根據(jù)定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊.能根據(jù)定理判斷線段是否為對應線段是解決此題的關鍵.6、A【解析】

根據(jù)題意得到原幾何體的主視圖,結合主視圖選擇.【詳解】解:原幾何體的主視圖是:.視圖中每一個閉合的線框都表示物體上的一個平面,左側的圖形只需要兩個正方體疊加即可.故取走的正方體是①.故選A.【點睛】本題考查了簡單組合體的三視圖,中等難度,作出幾何體的主視圖是解題關鍵.7、D【解析】

首先根據(jù)不等式的性質,解出x≤,由數(shù)軸可知,x≤-1,所以=-1,解出即可;【詳解】解:不等式,解得x<,由數(shù)軸可知,所以,解得;故選:.【點睛】本題主要考查了不等式的解法和在數(shù)軸上表示不等式的解集,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.8、B【解析】

先求出不等式的解集,然后從解集中找出最小整數(shù)即可.【詳解】∵3x≥x-5,∴3x-x≥-5,∴x≥-5∴不等式3x≥x-5的最小整數(shù)解是x=-2.故選B.【點睛】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關鍵.最后一步系數(shù)化為1時,如果未知數(shù)的系數(shù)是負數(shù),則不等號的方向要改變,如果系數(shù)是正數(shù),則不等號的方不變.9、A【解析】

利用垂徑定理的推論得出DO⊥AB,AF=BF,進而得出DF的長和△DEF∽△CEA,再利用相似三角形的性質求出即可.【詳解】連接DO,交AB于點F,∵D是的中點,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,F(xiàn)O=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.【點睛】此題主要考查了垂徑定理的推論以及相似三角形的判定與性質,根據(jù)已知得出△DEF∽△CEA是解題關鍵.10、C【解析】

根據(jù)∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據(jù)相似三角形對應邊的比相等得到代入求值即可.【詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【點睛】主要考查相似三角形的判定與性質,掌握相似三角形的判定定理是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、205.1【解析】

A、先根據(jù)多邊形外角和為360°且各外角相等求得邊數(shù),再根據(jù)多邊形對角線條數(shù)的計算公式計算可得;B、利用計算器計算可得.【詳解】A、根據(jù)題意,此正多邊形的邊數(shù)為360°÷45°=8,則這個正多邊形對角線的條數(shù)一共有=20,故答案為20;B、?tan63°27′≈2.646×2.001≈5.1,故答案為5.1.【點睛】本題主要考查計算器-三角函數(shù),解題的關鍵是掌握多邊形的內角與外角、對角線計算公式及計算器的使用.12、4【解析】

先根據(jù)圓錐的側面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出OA,最后用勾股定理即可得出結論.【詳解】設圓錐底面圓的半徑為r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根據(jù)勾股定理得,OC==4,故答案為4.【點睛】本題考查了扇形的弧長公式,圓錐的側面展開圖,勾股定理,求出OA的長是解本題的關鍵.13、【解析】

將點的坐標代入,可以得到-1=,然后解方程,便可以得到k的值.【詳解】∵反比例函數(shù)y=的圖象經(jīng)過點(2,-1),

∴-1=

∴k=?;

故答案為k=?.【點睛】本題主要考查函數(shù)圖像上的點滿足其解析式,可以結合代入法進行解答14、【解析】

分別求出各不等式的解集,再求出其公共解集即可.【詳解】解不等式①,得x>1,

解不等式②,得x≤1,

所以不等式組的解集是1<x≤1,

故答案是:1<x≤1.【點睛】考查了一元一次不等式解集的求法,求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).15、【解析】如圖,連接EF,∵點E、點F是AD、DC的中點,∴AE=ED,CF=DF=CD=AB=1,由折疊的性質可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點睛:本題考查了翻折變換的知識,解答本題的關鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長,再利用勾股定理解答即可.16、(x+2)(x﹣2)【解析】【分析】直接利用平方差公式進行因式分解即可.【詳解】x2﹣4=x2-22=(x+2)(x﹣2),故答案為:(x+2)(x﹣2).【點睛】本題考查了平方差公式因式分解.能用平方差公式進行因式分解的式子的特點是:兩項平方項,符號相反.三、解答題(共8題,共72分)17、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).【解析】

(1)利用對稱軸公式求出m的值,即可確定出解析式;(1)根據(jù)x的范圍,利用二次函數(shù)的增減性確定出y的范圍即可;(3)根據(jù)題意確定出D與A坐標,進而求出直線AD解析式,設出E坐標,利用對稱性確定出E坐標即可.【詳解】(1)∵拋物線對稱軸為直線x=﹣1,∴﹣=﹣1,即m=﹣1,則二次函數(shù)解析式為y=﹣x1﹣1x+6;(1)當x=﹣時,y=;當x=1時,y=.∵﹣<x<1位于對稱軸右側,y隨x的增大而減小,∴<y<;(3)當x=﹣1時,y=8,∴頂點D的坐標是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.∵點A在點B的左側,∴點A坐標為(﹣6,0).設直線AD解析式為y=kx+b,可得:,解得:,即直線AD解析式為y=1x+11.設E(0,n),則有E′(﹣4,n),代入y=1x+11中得:n=4,則點E坐標為(0,4).【點睛】本題考查了拋物線與x軸的交點,以及二次函數(shù)的性質,熟練掌握二次函數(shù)的性質是解答本題的關鍵.18、(1)證明見解析;(2)1-π.【解析】

(1)解直角三角形求出BC,根據(jù)勾股定理求出AB,根據(jù)三角形面積公式求出CF,根據(jù)切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點睛】本題考查了勾股定理,扇形的面積,解直角三角形,切線的性質和判定等知識點,能求出CF的長是解答此題的關鍵.19、(1)證明見解析(2)3【解析】

(1)連接,由為的中點,得到,等量代換得到,根據(jù)平行線的性質得到,即可得到結論;(2)連接,由勾股定理得到,根據(jù)切割線定理得到,根據(jù)勾股定理得到,由圓周角定理得到,即可得到結論.【詳解】相切,連接,∵為的中點,∴,∵,∴,∴,∴,∵,∴,∴直線與相切;方法:連接,∵,,∵,∴,∵是的切線,∴,∴,∴,∵為的中點,∴,∵為的直徑,∴,∴.方法:∵,易得,∴,∴.【點睛】本題考查了直線與圓的位置關系,切線的判定和性質,圓周角定理,勾股定理,平行線的性質,切割線定理,熟練掌握各定理是解題的關鍵.20、(1)40;(2)54,補圖見解析;(3)330;(4).【解析】

(1)根據(jù)由自主學習的時間是1小時的人數(shù)占30%,可求得本次調查的學生人數(shù);(2),由自主學習的時間是0.5小時的人數(shù)為40×35%=14;(3)求出這40名學生自主學習時間不少于1.5小時的百分比乘以600即可;(4)根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與選中小亮A的情況,再利用概率公式求解即可求得答案.【詳解】(1)∵自主學習的時間是1小時的有12人,占30%,∴12÷30%=40,故答案為40;(2),故答案為54;自主學習的時間是0.5小時的人數(shù)為40×35%=14;補充圖形如圖:(3)600×=330;故答案為330;(4)畫樹狀圖得:∵共有12種等可能的結果,選中小亮A的有6種可能,∴P(A)=.21、(1)A(﹣8,0),B(0,﹣6);(2);(3)存在.P點坐標為(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)時,使得.【解析】分析:(1)令已知的直線的解析式中x=0,可求出B點坐標,令y=0,可求出A點坐標;(2)根據(jù)A、B的坐標易得到M點坐標,若拋物線的頂點C在⊙M上,那么C點必為拋物線對稱軸與⊙O的交點;根據(jù)A、B的坐標可求出AB的長,進而可得到⊙M的半徑及C點的坐標,再用待定系數(shù)法求解即可;(3)在(2)中已經(jīng)求得了C點坐標,即可得到AC、BC的長;由圓周角定理:∠ACB=90°,所以此題可根據(jù)兩直角三角形的對應直角邊的不同來求出不同的P點坐標.本題解析:(1)對于直線,當時,;當時,所以A(﹣8,0),B(0,﹣6);(2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB為⊙M的直徑,∴點M為AB的中點,M(﹣4,﹣3),∵MC∥y軸,MC=5,∴C(﹣4,2),設拋物線的解析式為y=a(x+4)2+2,把B(0,﹣6)代入得16a+2=﹣6,解得a=,∴拋物線的解析式為,即;(3)存在.當y=0時,,解得x,=﹣2,x,=﹣6,∴D(﹣6,0),E(﹣2,0),,設P(t,-6),∵∴=20,即||=1,當=-1,解得,,此時P點坐標為(﹣4+,-1)或(﹣4﹣,-1);當時,解得=﹣4+,=﹣4﹣;此時P點坐標為(﹣4+,1)或(﹣4﹣,1).綜上所述,P點坐標為(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)時,使得.點睛:本題考查了二次函數(shù)的綜合應用及頂點式求二次函數(shù)的解析式和一元二次方程的解法,本題的綜合性較強,注意分類討論的思想應用.22、(1)10,144;(2)詳見解析;(3)96【解析】

(1)依據(jù)C類型的人數(shù)以及百分比,即可得到該班留守的學生數(shù)量,依據(jù)B類型留守學生所占的百分比,即可得到其所在扇形的圓心角的度數(shù);(2)依據(jù)D類型留守學生的數(shù)量,即可將條形統(tǒng)計圖補充完整;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論