高中數(shù)列公式總結(jié)(10篇)_第1頁
高中數(shù)列公式總結(jié)(10篇)_第2頁
高中數(shù)列公式總結(jié)(10篇)_第3頁
高中數(shù)列公式總結(jié)(10篇)_第4頁
高中數(shù)列公式總結(jié)(10篇)_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

高中數(shù)列公式總結(jié)(10篇)

前n項(xiàng)和圖(1)

其中a1為首項(xiàng),n為項(xiàng)數(shù),an為末項(xiàng)。

前n項(xiàng)和圖(2)

(注:該公式對任意數(shù)列都適用)

高中數(shù)列公式總結(jié)第2篇

等比數(shù)列求和公式

(1)等比數(shù)列:a(n+1)/an=q(n∈N)。

(2)通項(xiàng)公式:an=a1×q^(n-1);推廣式:an=am×q^(n-m);

(3)求和公式:Sn=n×a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q為公比,n為項(xiàng)數(shù))

(4)性質(zhì):

①若m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;

②在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.

③若m、n、q∈N,且m+n=2q,則am×an=aq^2

(5)“G是a、b的等比中項(xiàng)”“G^2=ab(G≠0)”.

(6)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零.注意:上述公式中an表示等比數(shù)列的第n項(xiàng)。

等比數(shù)列求和公式推導(dǎo):Sn=a1+a2+a3+...+an(公比為q)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)Sn-q*Sn=a1-a(n+1)(1-q)Sn=a1-a1*q^nSn=(a1-a1*q^n)/(1-q)Sn=(a1-an*q)/(1-q)Sn=a1(1-q^n)/(1-q)Sn=k*(1-q^n)~y=k*(1-a^x)。

高中數(shù)列公式總結(jié)第3篇

通項(xiàng)公式圖(1)

②an和Sn之間的關(guān)系

通項(xiàng)公式圖(2)

(注:該公式對任意數(shù)列都適用)

高中數(shù)列公式總結(jié)第4篇

一、題目已知或通過簡單推理判斷出是等比數(shù)列或等差數(shù)列,直接用其通項(xiàng)公式。

例:在數(shù)列{an}中,若a1=1,an+1=an+2(n1),求該數(shù)列的'通項(xiàng)公式an。

解:由an+1=an+2(n1)及已知可推出數(shù)列{an}為a1=1,d=2的等差數(shù)列。所以an=2n-1。此類題主要是用等比、等差數(shù)列的定義判斷,是較簡單的基礎(chǔ)小題。

二、已知數(shù)列的前n項(xiàng)和,用公式

S1(n=1)

Sn-Sn-1(n2)

例:已知數(shù)列{an}的前n項(xiàng)和Sn=n2-9n,第k項(xiàng)滿足5

(A)9(B)8(C)7(D)6

解:∵an=Sn-Sn-1=2n-10,∴52k-108∴k=8選(B)

此類題在解時要注意考慮n=1的情況。

三、已知an與Sn的關(guān)系時,通常用轉(zhuǎn)化的方法,先求出Sn與n的關(guān)系,再由上面的(二)方法求通項(xiàng)公式。

例:已知數(shù)列{an}的前n項(xiàng)和Sn滿足an=SnSn-1(n2),且a1=-,求數(shù)列{an}的通項(xiàng)公式。

解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,兩邊同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-}是以-為首項(xiàng),-1為公差的等差數(shù)列,∴-=-,Sn=-,

再用(二)的方法:當(dāng)n2時,an=Sn-Sn-1=-,當(dāng)n=1時不適合此式,所以,

-(n=1)

-(n2)

四、用累加、累積的方法求通項(xiàng)公式

對于題中給出an與an+1、an-1的遞推式子,常用累加、累積的方法求通項(xiàng)公式。

例:設(shè)數(shù)列{an}是首項(xiàng)為1的正項(xiàng)數(shù)列,且滿足(n+1)an+12-nan2+an+1an=0,求數(shù)列{an}的通項(xiàng)公式

解:∵(n+1)an+12-nan2+an+1an=0,可分解為[(n+1)an+1-nan](an+1+an)=0

又∵{an}是首項(xiàng)為1的正項(xiàng)數(shù)列,∴an+1+an≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,這n-1個式子,將其相乘得:∴-=-,

又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)

五、用構(gòu)造數(shù)列方法求通項(xiàng)公式

題目中若給出的是遞推關(guān)系式,而用累加、累積、迭代等又不易求通項(xiàng)公式時,可以考慮通過變形,構(gòu)造出含有an(或Sn)的式子,使其成為等比或等差數(shù)列,從而求出an(或Sn)與n的關(guān)系,這是近一、二年來的高考熱點(diǎn),因此既是重點(diǎn)也是難點(diǎn)。

例:已知數(shù)列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……

(1)求{an}通項(xiàng)公式(2)略

解:由an+1=(--1)(an+2)得到an+1--=(--1)(an--)

∴{an--}是首項(xiàng)為a1--,公比為--1的等比數(shù)列。

由a1=2得an--=(--1)n-1(2--),于是an=(--1)n-1(2--)+-

又例:在數(shù)列{an}中,a1=2,an+1=4an-3n+1(n∈N*),證明數(shù)列{an-n}是等比數(shù)列。

證明:本題即證an+1-(n+1)=q(an-n)(q為非0常數(shù))

由an+1=4an-3n+1,可變形為an+1-(n+1)=4(an-n),又∵a1-1=1,

所以數(shù)列{an-n}是首項(xiàng)為1,公比為4的等比數(shù)列。

若將此問改為求an的通項(xiàng)公式,則仍可以通過求出{an-n}的通項(xiàng)公式,再轉(zhuǎn)化到an的通項(xiàng)公式上來。

又例:設(shè)數(shù)列{an}的首項(xiàng)a1∈(0,1),an=-,n=2,3,4……(1)求{an}通項(xiàng)公式。(2)略

解:由an=-,n=2,3,4,……,整理為1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首項(xiàng)為1-a1,公比為--的等比數(shù)列,得an=1-(1-a1)(--)n-1

高中數(shù)列公式總結(jié)第5篇

高一數(shù)列知識點(diǎn)總結(jié)

等差數(shù)列公式

等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d

或an=am+(n-m)d

前n項(xiàng)和公式為:Sn=na1+[n(n-1)/2]d或sn=(a1+an)n/2

若m+n=2p則:am+an=2ap

以上n均為正整數(shù)

第n項(xiàng)的值=首項(xiàng)+(項(xiàng)數(shù)-1)*公差

前n項(xiàng)的和=(首項(xiàng)+末項(xiàng))*項(xiàng)數(shù)/2

公差=后項(xiàng)-前項(xiàng)

等比數(shù)列公式

等比數(shù)列求和公式

(1)等比數(shù)列:a(n+1)/an=q(n∈N)。

(2)通項(xiàng)公式:an=a1×q^(n-1);推廣式:an=am×q^(n-m);

(3)求和公式:Sn=n×a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q為公比,n為項(xiàng)數(shù))

(4)性質(zhì):

①若m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;

②在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.

③若m、n、q∈N,且m+n=2q,則am×an=aq^2

(5)“G是a、b的等比中項(xiàng)”“G^2=ab(G≠0)”.

(6)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零.注意:上述公式中an表示等比數(shù)列的第n項(xiàng)。

等比數(shù)列求和公式推導(dǎo):Sn=a1+a2+a3+...+an(公比為q)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)Sn-q*Sn=a1-a(n+1)(1-q)Sn=a1-a1*q^nSn=(a1-a1*q^n)/(1-q)Sn=(a1-an*q)/(1-q)Sn=a1(1-q^n)/(1-q)Sn=k*(1-q^n)~y=k*(1-a^x)。

高中數(shù)列公式總結(jié)第6篇

高考數(shù)列知識點(diǎn)總結(jié)

數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識和指數(shù)函數(shù)、對數(shù)函數(shù)和不等式的知識綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。探索性問題是高考的熱點(diǎn),常在數(shù)列解答題中出現(xiàn)。本章中還蘊(yùn)含著豐富的`數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。

近幾年來,高考關(guān)于數(shù)列方面的命題主要有以下三個方面;

(1)數(shù)列本身的有關(guān)知識,其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式及求和公式。

(2)數(shù)列與其它知識的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。

(3)數(shù)列的應(yīng)用問題,其中主要是以增長率問題為主。

試題的難度有三個層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。

知識整合

1.在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項(xiàng)公式、前n項(xiàng)和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實(shí)踐中的指導(dǎo)作用,靈活地運(yùn)用數(shù)列知識和方法解決數(shù)學(xué)和實(shí)際生活中的有關(guān)問題;

2.在解決綜合題和探索性問題實(shí)踐中加深對基礎(chǔ)知識、基本技能和基本數(shù)學(xué)思想方法的認(rèn)識,溝通各類知識的聯(lián)系,形成更完整的知識網(wǎng)絡(luò),提高分析問題和解決問題的能力,

進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想方法分析問題與解決問題的能力。

3.培養(yǎng)學(xué)生善于分析題意,富于聯(lián)想,以適應(yīng)新的背景,新的設(shè)問方式,提高學(xué)生用函數(shù)的思想、方程的思想研究數(shù)列問題的自覺性、培養(yǎng)學(xué)生主動探索的精神和科學(xué)理性的思維方法。

高中數(shù)列公式總結(jié)第7篇

來自:當(dāng)以讀書通世事>《073-數(shù)學(xué)(大中小學(xué))》

0條評論

發(fā)表

請遵守用戶評論公約

數(shù)學(xué)中有哪些有趣的數(shù)列求和公式?

數(shù)學(xué)中有哪些有趣的數(shù)列求和公式?利用等差數(shù)列、等比數(shù)列、或常見的可求和數(shù)列公式進(jìn)行求和。某些數(shù)列,通過適當(dāng)分組,可得出兩個或幾...

高中數(shù)學(xué):數(shù)列知識點(diǎn)總結(jié)(文字版)

高中數(shù)學(xué):數(shù)列知識點(diǎn)總結(jié)(文字版)定義:對于數(shù)列,若(常數(shù)),則數(shù)列是等差數(shù)列。[說明]:在一個等差數(shù)列中,從第2項(xiàng)起,每一項(xiàng)(有窮等差數(shù)列的末項(xiàng)除外)都是它的前一項(xiàng)與后一項(xiàng)的等差中項(xiàng);③若數(shù)...

數(shù)列知識2022-7-3公比:等比數(shù)列的符號為:q(公比);公式為:an/an-11、公式法:1)等差數(shù)列前n項(xiàng)和公式:Sn=na1+n(n-1)d/2=n(a1+an)...

高考專題:數(shù)列求和方法歸析

高考專題:數(shù)列求和方法歸析。把數(shù)列分為特殊數(shù)列即等差(比)數(shù)列,然后利用公式求解,要分清楚哪些項(xiàng)構(gòu)成等差數(shù)列,哪些項(xiàng)構(gòu)成等比數(shù)...

高考數(shù)學(xué):數(shù)列求和的常用方法

1、如果一個數(shù)列是等差數(shù)列或等比數(shù)列,則求和時直接利用等差、等比數(shù)列的前n項(xiàng)和公式,注意等比數(shù)列公比q的取值情況要分q=1或q≠1.若...

【高考數(shù)學(xué)】解題能力提升,每日一題:第185題

【高考數(shù)學(xué)】解題能力提升,每日一題:第185題。(2)數(shù)列{bn}滿足bn=(log2a2n+1)×(log2a2n+3),求數(shù)列{1/bn}的前n項(xiàng)和..如果...

高考數(shù)學(xué)|求數(shù)列通項(xiàng)公式的方法:方法全,...

數(shù)學(xué)歸納法、總述:一.利用遞推關(guān)系式求數(shù)列通項(xiàng)的11種方法:累加法、累乘法、待定系數(shù)法、階差法(逐差法)、迭代法、對數(shù)變換法、倒...

§147復(fù)習(xí)與小結(jié)

數(shù)列求和方法

數(shù)列求和的基本方法和技巧。數(shù)列是高中代數(shù)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ).在高考和各種數(shù)學(xué)競賽中都占有重要的地位.數(shù)列求和是數(shù)列的重要內(nèi)容之一,除了等差數(shù)列和等比數(shù)列有求和公式外,大部分...

微信掃碼,在手機(jī)上查看選中內(nèi)容

微信掃碼,在手機(jī)上查看選中內(nèi)容

高中數(shù)列公式總結(jié)第8篇

高中數(shù)列知識點(diǎn)總結(jié)

高中數(shù)列知識點(diǎn)總結(jié)

1、高二數(shù)學(xué)數(shù)列的定義

按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項(xiàng)。

(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列。

(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,…。

(4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n。

(5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的'數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別。如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合。

2、高二數(shù)學(xué)數(shù)列的分類

(1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列。在寫數(shù)列時,對于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列。

(2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列。

3、高二數(shù)學(xué)數(shù)列的通項(xiàng)公式

數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,

這兩個通項(xiàng)公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是唯一的,僅僅知道一個數(shù)列前面的有限項(xiàng),無其他說明,數(shù)列是不能確定的,通項(xiàng)公式更非唯一。如:數(shù)列1,2,3,4,…,

由公式寫出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫出其通項(xiàng)公式,沒有通用的方法可循。

再強(qiáng)調(diào)對于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):

(1)數(shù)列的通項(xiàng)公式實(shí)際上是一個以正整數(shù)集N*或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式。

(2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數(shù)列的各項(xiàng);同時,用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話,是第幾項(xiàng)。

(3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式。

如2的不足近似值,精確到1,0。1,0。01,0。001,0。0001,…所構(gòu)成的數(shù)列1,1。4,1。41,1。414,1。4142,…就沒有通項(xiàng)公式。

(4)有的數(shù)列的通項(xiàng)公式,形式上不一定是唯一的,正如舉例中的:

(5)有些數(shù)列,只給出它的前幾項(xiàng),并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不唯一。

4、高二數(shù)學(xué)數(shù)列的圖象

對于數(shù)列4,5,6,7,8,9,10每一項(xiàng)的序號與這一項(xiàng)有下面的對應(yīng)關(guān)系:

序號:1234567

項(xiàng):45678910

這就是說,上面可以看成是一個序號集合到另一個數(shù)的集合的映射。因此,從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看作是一個定義域?yàn)檎疦*(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時,對應(yīng)的一列函數(shù)值。這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù)。

由于數(shù)列的項(xiàng)是函數(shù)值,序號是自變量,數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)和解析式。

數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的。

數(shù)列用圖象來表示,可以以序號為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo),描點(diǎn)畫圖來表示一個數(shù)列,在畫圖時,為方便起見,在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確。

把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論