2024屆湖北省隨州市曾都區(qū)唐縣中考數(shù)學(xué)四模試卷含解析_第1頁
2024屆湖北省隨州市曾都區(qū)唐縣中考數(shù)學(xué)四模試卷含解析_第2頁
2024屆湖北省隨州市曾都區(qū)唐縣中考數(shù)學(xué)四模試卷含解析_第3頁
2024屆湖北省隨州市曾都區(qū)唐縣中考數(shù)學(xué)四模試卷含解析_第4頁
2024屆湖北省隨州市曾都區(qū)唐縣中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年湖北省隨州市曾都區(qū)唐縣重點名校中考數(shù)學(xué)四模試卷

注意事項:

1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)

填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處”o

2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦

干凈后,再選涂其他答案。答案不能答在試題卷上。

3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先

劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。

4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。

一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)

1.如圖,△ABC為直角三角形,ZC=90°,BC=2cm,NA=30。,四邊形DEFG為矩形,DE=2V§"cm,EF=6cm,

且點C、B、E、F在同一條直線上,點B與點E重合.RtAABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,

當(dāng)點C與點F重合時停止.設(shè)RtAABC與矩形DEFG的重疊部分的面積為yen?,運動時間xs.能反映yen?與xs

之間函數(shù)關(guān)系的大致圖象是()

2.當(dāng)x=l時,代數(shù)式x3+x+m的值是7,則當(dāng)x=-1時,這個代數(shù)式的值是()

A.7D.-7

3.學(xué)完分式運算后'老師出了一道題,,計算:累

小明的做法:原式=(x+?(x2)_^zl=/+x6-x-2X2-8

x-4A:2-4X2-4

小亮的做法:原式—(x+3)(%—2)+(2—x)=x2+x—6+2—%=4;

x+3x—2x+31x+3—1

小芳的做法:原式=----~~—~~—=----------=-----=1.

x+2(x+2)(x-2)x+2x+2x+2

其中正確的是()

A.小明B.小亮C.小芳D.沒有正確的

4.如圖的幾何體是由五個小正方體組合而成的,則這個幾何體的左視圖是()

ZZ7

正面

A.-------------------------B.——?——?——

cFhnDftn

5.《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)的重要著作,方程術(shù)是它的最高成就.其中記載:今有共買物,人出八,盈三;人出

七,不足四,問人數(shù)、物價各幾何?譯文:今有人合伙購物,每人出8錢,會多3錢;每人出7錢,又會差4錢,問

人數(shù)、物價各是多少?設(shè)合伙人數(shù)為x人,物價為y錢,以下列出的方程組正確的是()

y-8x=3fy-8x=3f8x-y=3f8x-y=3

A.《B.〈C.《D.《

y—7x=4\Jx-y=41y—7x=417x—y=4

6.下列命題是真命題的是()

A.一組對邊平行,另一組對邊相等的四邊形是平行四邊形

B.兩條對角線相等的四邊形是平行四邊形

C.兩組對邊分別相等的四邊形是平行四邊形

D.平行四邊形既是中心對稱圖形,又是軸對稱圖形

7.計算3x(-5)的結(jié)果等于()

A.-15B.-8C.8D.15

8.如圖,如果從半徑為9cm的圓形紙片剪去:圓周的一個扇形,將留下的扇形圍成

一個圓錐(接縫處不重疊),那么這個圓錐的高為

A.6cmD.5^3cm

9.如圖,已知AB〃CD,Zl=115°,Z2=65°,則NC等于()

A.40°B.45°C.50°D.60°

10.如圖,已知兩個全等的直角三角形紙片的直角邊分別為。、b(a#b),將這兩個三角形的一組等邊重合,拼合成

一個無重疊的幾何圖形,其中軸對稱圖形有()

A.3個;B.4個;C.5個;D.6個.

二、填空題(共7小題,每小題3分,滿分21分)

11.計算血x30結(jié)果等于.

12.正方形EFGH的頂點在邊長為3的正方形ABCD邊上,若AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關(guān)

系式為.

D_____H

13.如圖是由6個棱長均為1的正方體組成的幾何體,它的主視圖的面積為

TF?

3.

14.如圖,直線,=-7+3與x軸、y軸分別交于點A、B;點Q是以C(0,-1)為圓心、1為半徑的圓上一動點,

過Q點的切線交線段AB于點P,則線段PQ的最小是.

15.如圖,在扇形AOB中NAOB=90。,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長

線上,當(dāng)扇形AOB的半徑為20時,陰影部分的面積為.

16.如圖,六邊形ABCDEF的六個內(nèi)角都相等.若AB=1,BC=CD=3,DE=2,則這個六邊形的周長等于

17.三角形的每條邊的長都是方程V—6%+8=0的根,則三角形的周長是.

三、解答題(共7小題,滿分69分)

18.(10分)一次函數(shù)y=I的圖象如圖所示,它與二次函數(shù)y=ax2—4ax+c的圖象交于A、B兩點(其中點A在點

B的左側(cè)),與這個二次函數(shù)圖象的對稱軸交于點C.

(1)求點C的坐標(biāo);

(2)設(shè)二次函數(shù)圖象的頂點為D.

①若點D與點C關(guān)于x軸對稱,且AACD的面積等于3,求此二次函數(shù)的關(guān)系式;

②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關(guān)系式.

19.(5分)如圖1,反比例函數(shù)y=勺(x>0)的圖象經(jīng)過點A(2百,1),射線A5與反比例函數(shù)圖象交于另一點

X

B(1,a),射線AC與y軸交于點C,NR4c=75。,AZ>_Ly軸,垂足為。.

(1)求上的值;

(2)求tan/ZMC的值及直線AC的解析式;

(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線Ux軸,與AC相交于點N,連接CM,求4CMN

面積的最大值.

20.(8分)如圖,AABC中,點D在邊AB上,滿足NACD=NABC,若AC=J§\AD=1,求DB的長.

21.(10分)如圖,已知AB是。。上的點,C是。。上的點,點D在AB的延長線上,ZBCD=ZBAC.求證:CD

BD=2,求圖中陰影部分的面積.

22.(10分)五一期間,小紅到郊野公園游玩,在景點P處測得景點B位于南偏東45。方向,然后沿北偏東37。方向走

200m米到達(dá)景點A,此時測得景點B正好位于景點A的正南方向,求景點A與景點B之間的距離.(結(jié)果保留整數(shù))

參考數(shù)據(jù):sin37Ho.60,cos37°=0.80,tan37°?0.75

23.(12分)某公司10名銷售員,去年完成的銷售額情況如表:

銷售額(單位:萬元)34567810

銷售員人數(shù)(單位:人)1321111

(1)求銷售額的平均數(shù)、眾數(shù)、中位數(shù);

(2)今年公司為了調(diào)動員工積極性,提高年銷售額,準(zhǔn)備采取超額有獎的措施,請根據(jù)(1)的結(jié)果,通過比較,合

理確定今年每個銷售員統(tǒng)一的銷售額標(biāo)準(zhǔn)是多少萬元?

24.(14分)為了保障市民安全用水,我市啟動自來水管改造工程,該工程若甲隊單獨施工,恰好在規(guī)定時間內(nèi)完成;

若由乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的3倍.若甲、乙兩隊先合作施工45天,則余下的工程甲隊還

需單獨施工23天才能完成.這項工程的規(guī)定時間是多少天?

參考答案

一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)

1、A

【解題分析】

VZC=90°,BC=2cm,ZA=30°,

.?.43=4,

由勾股定理得:AC=2^3,

:四邊形。E尸G為矩形,ZC=90,

:.DE=GF=26,ZC=NOE尸=90°,

:.AC//DE,

此題有三種情況:

(1)當(dāng)0〈尤<2時,48交OE于如圖

*:DE//ACf

.EH_BE

**AC-BC

EHX

即亞二

2

解得:EHfx,

92

所以廠;?百XX=^-X9

22

Vx、y之間是二次函數(shù),

所以所選答案C錯誤,答案D錯誤,

Va=2L±>o,開口向上;

2

(2)當(dāng)2登6時,如圖,

ECRF

此時y=~X2X26=26,

(3)當(dāng)6〈在8時,如圖,設(shè)AA8C的面積是si,△FNB的面積是S2,

D---------ii-G

ECFB

BF=x-6,與(1)類同,同法可求尸N=gx-6g,

.力=S1-S2,

=;x2x26-|x(x-6)x(若X-6石),

=-2+6G”-16^/3,

2

-B<o,

2

開口向下,

所以答案A正確,答案B錯誤,

故選A.

點睛:本題考查函數(shù)的圖象.在運動的過程中正確區(qū)分函數(shù)圖象是解題的關(guān)鍵.

2、B

【解題分析】

因為當(dāng)x=l時,代數(shù)式--…的值是7,所以l+l+m=7,所以m=5,當(dāng)x=-l時,-=-1-1+5=3,

故選B.

3、C

【解題分析】

試題解析:T+—

x+2x2-4

x+3x-2

x+2(%+2)(%-2)

_x+31

x+2x+2

_x+3-l

x+2

_x+2

x+2

=1.

所以正確的應(yīng)是小芳.

故選C.

4、D

【解題分析】

找到從左面看到的圖形即可.

【題目詳解】

從左面上看是D項的圖形.故選D.

【題目點撥】

本題考查三視圖的知識,左視圖是從物體左面看到的視圖.

5、C

【解題分析】

【分析】分析題意,根據(jù)“每人出8錢,會多3錢;每人出7錢,又會差4錢,”可分別列出方程.

【題目詳解】

設(shè)合伙人數(shù)為x人,物價為y錢,根據(jù)題意得

8x-y=3

<

y-7x=4

故選C

【題目點撥】本題考核知識點:列方程組解應(yīng)用題.解題關(guān)鍵點:找出相等關(guān)系,列出方程.

6、C

【解題分析】

根據(jù)平行四邊形的五種判定定理(平行四邊形的判定方法:①兩組對邊分別平行的四邊形;②兩組對角分別相等的四

邊形;③兩組對邊分別相等的四邊形;④一組對邊平行且相等的四邊形;⑤對角線互相平分的四邊形)和平行四邊形

的性質(zhì)進(jìn)行判斷.

【題目詳解】

A、一組對邊平行,另一組對邊相等的四邊形不是平行四邊形;故本選項錯誤;

3、兩條對角線互相平分的四邊形是平行四邊形.故本選項錯誤;

C、兩組對邊分別相等的四邊形是平行四邊形.故本選項正確;

。、平行四邊形不是軸對稱圖形,是中心對稱圖形.故本選項錯誤;

故選:C.

【題目點撥】

考查了平行四邊形的判定與性質(zhì).平行四邊形的判定方法共有五種,應(yīng)用時要認(rèn)真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時

要根據(jù)條件合理、靈活地選擇方法.

7、A

【解題分析】

按照有理數(shù)的運算規(guī)則計算即可.

【題目詳解】

原式=-3x5=-15,故選擇A.

【題目點撥】

本題考查了有理數(shù)的運算,注意符號不要搞錯.

8、B

【解題分析】

試題分析:?.?從半徑為9cm的圓形紙片上剪去耳圓周的一個扇形,

二留下的扇形的弧長=2(2"義9)=12兀,

3

根據(jù)底面圓的周長等于扇形弧長,

圓錐的底面半徑r=-----=6cm,

2n

二圓錐的高為,92-62=3V5cm

故選B.

考點:圓錐的計算.

9、C

【解題分析】

分析:根據(jù)兩直線平行,同位角相等可得Nl=N£GD=n5。,再根據(jù)三角形內(nèi)角與外角的性質(zhì)可得NC的度數(shù).

詳解:?.,A3〃C。,

:.Z1=ZEGD=115°,

VZ2=65,

,NC=115-65=50,

故選C.

點睛:考查平行線的性質(zhì)和三角形外角的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.

10、B

【解題分析】

分析:直接利用軸對稱圖形的性質(zhì)進(jìn)而分析得出答案.

詳解:如圖所示:將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有4個.

圖4

故選B.

點睛:本題主要考查了全等三角形的性質(zhì)和軸對稱圖形,正確把握軸對稱圖形的性質(zhì)是解題的關(guān)鍵.

二、填空題(共7小題,每小題3分,滿分21分)

11、1

【解題分析】

根據(jù)二次根式的乘法法則進(jìn)行計算即可.

【題目詳解】

近義3叵=卜西義3=2義3=6.

故答案為:L

【題目點撥】

考查二次根式的乘法,掌握二次根式乘法的運算法則是解題的關(guān)鍵.

12、y=2x2-6x+2

【解題分析】

由AAS證明△DHEgAAEF,得出DE=AF=x,DH=AE=l-x,再根據(jù)勾股定理,求出EH2,即可得到y(tǒng)與x之間的函

數(shù)關(guān)系式.

【題目詳解】

如圖所示:

?.?四邊形ABCD是邊長為1的正方形,

.,.ZA=ZD=20°,AD=1.

.,.Zl+Z2=20°,

,/四邊形EFGH為正方形,

.\ZHEF=20°,EH=EF.

/.Zl+Zl=20°,

.\Z2=Z1,

在4AHE與4BEF中

ZD=ZA

Z2=Z3,

EH=EF

/.△DHE^AAEF(AAS),

,DE=AF=x,DH=AE=l-x,

在RSAHE中,由勾股定理得:

EH2=DE2+DH2=X2+(1-X)2=2X2-6X+2;

BPy=2x2-6x+2(0<x<l),

故答案為y=2x2-6x+2.

【題目點撥】

本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理,本題難度適中,求出y與x之間的函數(shù)關(guān)系式是解

題的關(guān)鍵.

13、1.

【解題分析】

根據(jù)立體圖形畫出它的主視圖,再求出面積即可.

【題目詳解】

主視圖如圖所示,

???主視圖是由1個棱長均為1的正方體組成的幾何體,

...主視圖的面積為1X12=1.

故答案為:L

【題目點撥】

本題是簡單組合體的三視圖,主要考查了立體圖的左視圖,解本題的關(guān)鍵是畫出它的左視圖.

【解題分析】

解:過點C作直線A5于點P,過點P作。C的切線P。,切點為。,此時尸。最小,連接C。,如圖所示.

當(dāng)x=0時,y=3,.,.點B的坐標(biāo)為(0,3);

當(dāng)y=0時,x=4,?,?點A的坐標(biāo)為(4,0),OA=405=3,/.AB=+QB2=5,/.sinB=.

9AB5

':C(0,-1),:.BC=3-(-1)=4,:.CP^BC*sinB^—.

5

;尸。為。C的切線,.?.在RtACQP中,CQ=LNCQP=90°,二尸0=.。尸_⑦=

故答案為叵I.

5

15、71-1

【解題分析】

根據(jù)勾股定理可求OC的長,根據(jù)題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算

即可求解.

【題目詳解】

連接OC

\?在扇形AO3中NAO5=90。,正方形CDEF的頂點C是弧A5的中點,

:.ZCOD=45°,

**?OC=CD=1-^29

:.CD=OD=19

陰影部分的面積=扇形BOC的面積-三角形ODC的面積

45m(2回_Lp

3602

=7t-1.

故答案為n-1.

【題目點撥】

本題考查正方形的性質(zhì)和扇形面積的計算,解題關(guān)鍵是得到扇形半徑的長度.

16、2

【解題分析】

凸六邊形ABCDEF,并不是一規(guī)則的六邊形,但六個角都是110。,所以通過適當(dāng)?shù)南蛲庾餮娱L線,可得到等邊三角形,

進(jìn)而求解.

【題目詳解】

解:如圖,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、P.

H

二六邊形ABCDEF的每一個外角的度數(shù)都是60°.

AAAHF,△BGC,△DPE,4GHP都是等邊三角形.

/.GC=BC=3,DP=DE=L

:.GH=GP=GC+CD+DP=3+3+l=8,FA=HA=GH-AB-BG=8-l-3=4,EF=PH-HF-EP=8-4-l=l.

.?.六邊形的周長為1+3+3+14-4+1=2.

故答案為2.

【題目點撥】

本題考查了等邊三角形的性質(zhì)及判定定理;解題中巧妙地構(gòu)造了等邊三角形,從而求得周長.是非常完美的解題方法,

注意學(xué)習(xí)并掌握.

17、6或2或12

【解題分析】

首先用因式分解法求得方程的根,再根據(jù)三角形的每條邊的長都是方程好-6x+8=0的根,進(jìn)行分情況計算.

【題目詳解】

由方程d—6%+8=0,得》=2或1.

當(dāng)三角形的三邊是2,2,2時,則周長是6;

當(dāng)三角形的三邊是1,1,1時,則周長是12;

當(dāng)三角形的三邊長是2,2,1時,2+2=1,不符合三角形的三邊關(guān)系,應(yīng)舍去;

當(dāng)三角形的三邊是1,1,2時,則三角形的周長是1+1+2=2.

綜上所述此三角形的周長是6或12或2.

三、解答題(共7小題,滿分69分)

18、(1)點C(1,:);⑴①y=[xi—gx;②y=_#+lx+:.

【解題分析】

試題分析:(1)求得二次函數(shù)y=axi—4ax+c對稱軸為直線x=L把x=l代入y=}求得y=;,即可得點C的坐標(biāo);

(D①根據(jù)點D與點C關(guān)于x軸對稱即可得點D的坐標(biāo),并且求得CD的長,設(shè)A(m,,根據(jù)SAACD=3即

可求得m的值,即求得點A的坐標(biāo),把A.D的坐標(biāo)代入y=ax]-4ax+c得方程組,解得a、c的值即可得二次函數(shù)的

表達(dá)式.②設(shè)A(m,,)(m<l),過點A作AEJ_CD于E,則AE=1—m,CE==—1m,

根據(jù)勾股定理用m表示出AC的長,根據(jù)AACD的面積等于10可求得m的值,即可得A點的坐標(biāo),分兩種情況:

第一種情況,若a>0,則點D在點C下方,求點D的坐標(biāo);第二種情況,若aVO,則點D在點C上方,求點D的

坐標(biāo),分別把A、D的坐標(biāo)代入y=ax]-4ax+c即可求得函數(shù)表達(dá)式.

試題解析:(1)y=axx—4ax+c=a(x—1)4a+c????二次函數(shù)圖像的對稱軸為直線x=l.

當(dāng)x=l時,y=3=g,AC(1,1).

(1)①?.,點D與點C關(guān)于x軸對稱,(1,-b,ACD=3.

設(shè)A(m,;m)(m<l),由S4ACD=3,得gx3x(1—m)=3,解得m=0,/.A(0,0).

'c=0,

___3

由A(0,0)、D(1,J)得=-亍解得a=(c=0.

②設(shè)A(m,;m)(m<l),過點A作AE_LCD于E,則AE=1—m,CE=g-1i,

AC=(1—m),

VCD=AC,???CD=1(1-m).

由SAACD=10得(1—m)1=10,解得m=—1或m=6(舍去),;?m=-1.

AA(-1,一,CD=5.

若a>0,則點D在點C下方,.\D(1,一,

J12a+c=-1,(,_i

I___7'@g,

由A(-1,一]、D(1,-3)得「4a+c=一,解得〔c=T.

??y//,

若a<0,則點D在點C上方,.\D(1,y),

J12a+c=-1,Pa=-1,

3J3I—4a+c="Ic=9

由A(一1,,)、D(1,g)得〔2-解得〔「2-

,19

..y=-R+lx+3.

考點:二次函數(shù)與一次函數(shù)的綜合題.

19、(1)2-\/3;(2),y=—1;(3)—卜垂)

3-34

【解題分析】

試題分析:(1)根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征易得k=2逝;

(2)作BHLAD于H,如圖1,根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征確定B點坐標(biāo)為(1,273),貝!|AH=2,^-1,

BH=2g-l,可判斷△ABH為等腰直角三角形,所以NBAH=45。,得到NDAC=NBAC-NBAH=30。,根據(jù)特殊角

的三角函數(shù)值得tan/DAC=、±;由于AD,y軸,貝!IOD=1,AD=2g,然后在RtAOAD中利用正切的定義可計算

3

出CD=2,易得C點坐標(biāo)為(0,-1),于是可根據(jù)待定系數(shù)法求出直線AC的解析式為y=Y3x-l;

3

(3)利用M點在反比例函數(shù)圖象上,可設(shè)M點坐標(biāo)為(t,2叵)(0VtV2G),由于直線ll_x軸,與AC相交于

點N,得到N點的橫坐標(biāo)為t,利用一次函數(shù)圖象上點的坐標(biāo)特征得到N點坐標(biāo)為(t,Bt-1),則MN=38-

3t

走t+L根據(jù)三角形面積公式得到SACMN=L?t?(2叵-立t+1),再進(jìn)行配方得到$=-立(t-Y3)2+噸(0

32t3628

<t<2V3),最后根據(jù)二次函數(shù)的最值問題求解.

試題解析:(1)把A(2月,1)代入y=£得k=26xl=2杷;

X

(2)作BH_LAD于H,如圖1,

把B(1,a)代入反比例函數(shù)解析式y(tǒng)=2叵,得a=2出,

X

???B點坐標(biāo)為(1,273),

-,.AH=2V3-1,BH=26-1,

AABH為等腰直角三角形,二ZBAH=45°,

■:ZBAC=75°,二ZDAC=ZBAC-ZBAH=30°,

tanZDAC=tan30°=;

3

?.,AD_Ly軸,.*.OD=1,AD=2J3?VtanZDAC=—=—,

DA3

.\CD=2,.\OC=1,

???C點坐標(biāo)為(0,-1),

設(shè)直線AC的解析式為y=kx+b,

Cr-+_][—走

把A(2^/3.1),C(0,-1)代入得―3k+b-1,解得卜一行,

b=-\

11

直線AC的解析式為y=KL-1;

3

(3)設(shè)M點坐標(biāo)為(t,2y5)(0VtV2百),

t

?.?直線l_Lx軸,與AC相交于點N,...N點的橫坐標(biāo)為t,.1N點坐標(biāo)為(t,昱t-1),

3

2G(昌1-2石V3,+1

t3t3

.?.SACMN=L“?(^1-Bt+i)=-昱e+=t+6=-B(t-走)2+2^1(o<t<273),

2/362628

;a=-且<0,.?.當(dāng)t=走時,S有最大值,最大值為逑.

【解題分析】

試題分析:根據(jù)NACD=/ABC,NA是公共角,得出△ACDs^ABC,再利用相似三角形的性質(zhì)得出AB的長,從

而求出DB的長.

試題解析:

,:ZACD=ZABC,

又?../A=NA,

/.△ABC^AACD,

.AD_AC

??一,

ACAB

VAC=V3,AD=L

.1

..而=癡’

;.AB=3,

/.BD=AB-AD=3-1=2.

點睛:本題主要考查了相似三角形的判定以及相似三角形的性質(zhì),利用相似三角形的性質(zhì)求出AB的長是解題關(guān)鍵.

21、(1)證明見解析;(2)陰影部分面積為3

【解題分析】

【分析】(1)連接OC,易證NBCD=NOCA,由于AB是直徑,所以NACB=90。,所以NOCA+OCB=/BCD+NOCB=90。,

CD是。。的切線;

(2)設(shè)。O的半徑為r,AB=2r,由于ND=30。,ZOCD=90°,所以可求出r=2,ZAOC=120°,BC=2,由勾股定理

可知:AC=2A/3,分別計算^OAC的面積以及扇形OAC的面積即可求出陰影部分面積.

【題目詳解】(1)如圖,連接OC,

VOA=OC,

AZBAC=ZOCA,

VZBCD=ZBAC,

AZBCD=ZOCA,

VAB是直徑,

AZACB=90°,

:.ZOCA+OCB=ZBCD+ZOCB=90°

:.ZOCD=90°

voc是半徑,

???CD是。O的切線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論