版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆山東省青島三中高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,,則與的夾角為()A. B. C. D.2.已知數(shù)列中,,,且,則的值為()A. B. C. D.3.已知正方形的邊長為,若將正方形沿對角線折疊為三棱錐,則在折疊過程中,不能出現(xiàn)()A. B.平面平面 C. D.4.等比數(shù)列中,,則A.20 B.16 C.15 D.105.點(diǎn)、、、在同一個(gè)球的球面上,,.若四面體的體積的最大值為,則這個(gè)球的表面積為()A. B. C. D.6.以下莖葉圖記錄了甲、乙兩組各五名學(xué)生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為15,乙組數(shù)據(jù)的平均數(shù)為16.8,則x,y的值分別為()A.2,5 B.5,5 C.5,8 D.8,87.已知,,是三條不同的直線,,是兩個(gè)不同的平面,則下列命題正確的是A.若,,,,,則B.若,,,,則C.若,,,,,則D.若,,,則8.設(shè)a>0,b>0,若是和的等比中項(xiàng),則的最小值為()A.6 B. C.8 D.99.已知在R上是奇函數(shù),且滿足,當(dāng)時(shí),,則()A.-2 B.2 C.-98 D.9810.設(shè)、滿足約束條件,則的最大值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),當(dāng)時(shí),,若關(guān)于的方程有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為______.12.如圖,海岸線上有相距海里的兩座燈塔A,B,燈塔B位于燈塔A的正南方向.海上停泊著兩艘輪船,甲船位于燈塔A的北偏西,與A相距海里的D處;乙船位于燈塔B的北偏西方向,與B相距海里的C處,此時(shí)乙船與燈塔A之間的距離為海里,兩艘輪船之間的距離為海里.13.已知為數(shù)列{an}的前n項(xiàng)和,且,,則{an}的首項(xiàng)的所有可能值為______14.將角度化為弧度:________.15._________________.16.在中,角A,B,C所對的邊分別為a,b,c,若的面積為,則的最大值為________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知以點(diǎn)(a∈R,且a≠0)為圓心的圓過坐標(biāo)原點(diǎn)O,且與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.(1)求△OAB的面積;(2)設(shè)直線l:y=﹣2x+4與圓C交于點(diǎn)P、Q,若|OP|=|OQ|,求圓心C到直線l的距離.18.已知數(shù)列,.(1)若數(shù)列是等比數(shù)列,且,求數(shù)列的通項(xiàng)公式;(2)若數(shù)列是等差數(shù)列,且,數(shù)列滿足,當(dāng)時(shí),求的值.19.已知等差數(shù)列的前項(xiàng)和為,,.(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和;(3)在(2)的條件下,當(dāng)時(shí),比較和的大?。?0.在△ABC中,a=7,b=8,cosB=–.(Ⅰ)求∠A;(Ⅱ)求AC邊上的高.21.已知、、是的內(nèi)角,且,.(1)若,求的外接圓的面積:(2)若,且為鈍角三角形,求正實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
根據(jù)平面向量夾角公式可求得,結(jié)合的范圍可求得結(jié)果.【詳解】設(shè)與的夾角為,又故選:【點(diǎn)睛】本題考查平面向量夾角的求解問題,關(guān)鍵是熟練掌握兩向量夾角公式,屬于基礎(chǔ)題.2、A【解析】
由遞推關(guān)系,結(jié)合,,可求得,,的值,可得數(shù)列是一個(gè)周期為6的周期數(shù)列,進(jìn)而可求的值。【詳解】因?yàn)?,由,,得;由,,得;由,,得;由,,得;由,,得;由,,得由此推理可得?shù)列是一個(gè)周期為6的周期數(shù)列,所以,故選A。【點(diǎn)睛】本題考查由遞推關(guān)系求數(shù)列中的項(xiàng),考查數(shù)列周期的判斷,屬基礎(chǔ)題。3、D【解析】對于A:取BD中點(diǎn)O,因?yàn)?,AO所以面AOC,所以,故A對;對于B:當(dāng)沿對角線折疊成直二面角時(shí),有面平面平面,故B對;對于C:當(dāng)折疊所成的二面角時(shí),頂點(diǎn)A到底面BCD的距離為,此時(shí),故C對;對于D:若,因?yàn)?,面ABC,所以,而,即直角邊長與斜邊長相等,顯然不對;故D錯(cuò);故選D點(diǎn)睛:本題考查了立體幾何中折疊問題,要分析清楚折疊前后的變化量與不變量以及線線與線面的位置關(guān)系,屬于中檔題.4、B【解析】試題分析:由等比中項(xiàng)的性質(zhì)可得:,故選擇B考點(diǎn):等比中項(xiàng)的性質(zhì)5、D【解析】
根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時(shí)體積最大,可得與面垂直時(shí)體積最大,從而求出球的半徑,即可求出球的表面積.【詳解】根據(jù)題意知,、、三點(diǎn)均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時(shí)體積最大,所以,當(dāng)與面垂直時(shí)體積最大,最大值為,,設(shè)球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【點(diǎn)睛】本題考查的知識點(diǎn)是球內(nèi)接多面體,球的表面積,其中分析出何時(shí)四面體體積取最大值,是解答的關(guān)鍵.6、C【解析】試題分析:由題意得,,選C.考點(diǎn):莖葉圖7、D【解析】
逐一分析選項(xiàng),得到答案.【詳解】A.根據(jù)條件可知,若,不能推出;B.若,就不能推出;C.條件中沒有,所以不能推出;D.因?yàn)?,,所以,因?yàn)椋裕军c(diǎn)睛】本題考查了面面平行的判斷,屬于基礎(chǔ)題型,需要具有空間想象能力,以及邏輯推理能力.8、D【解析】
試題分析:由題意a>0,b>0,且是和的等比中項(xiàng),即,則,當(dāng)且僅當(dāng)時(shí),即時(shí)取等號.考點(diǎn):重要不等式,等比中項(xiàng)9、A【解析】
由在R上是奇函數(shù)且周期為4可得,即可算出答案【詳解】因?yàn)樵赗上是奇函數(shù),且滿足所以因?yàn)楫?dāng)時(shí),所以故選:A【點(diǎn)睛】本題考查的是函數(shù)的奇偶性和周期性,較簡單.10、C【解析】
作出不等式組所表示的可行域,平移直線,觀察直線在軸上的截距最大時(shí)對應(yīng)的最優(yōu)解,再將最優(yōu)解代入目標(biāo)函數(shù)可得出結(jié)果.【詳解】作出不等式組所表示的可行域如下圖中的陰影部分區(qū)域表示:聯(lián)立,得,可得點(diǎn)的坐標(biāo)為.平移直線,當(dāng)該直線經(jīng)過可行域的頂點(diǎn)時(shí),直線在軸上的截距最大,此時(shí)取最大值,即,故選:C.【點(diǎn)睛】本題考查簡單線性規(guī)劃問題,一般作出可行域,利用平移直線結(jié)合在坐標(biāo)軸上的截距取最值來取得,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、0<a≤或a.【解析】
運(yùn)用偶函數(shù)的性質(zhì),作出函數(shù)f(x)的圖象,由5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),結(jié)合圖象,分析有且僅有6個(gè)不同實(shí)數(shù)根的a的情況,即可得到a的范圍.【詳解】函數(shù)是定義域?yàn)榈呐己瘮?shù),作出函數(shù)f(x)的圖象如圖:關(guān)于x的方程5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),當(dāng)0≤x≤2時(shí),f(x)∈[0,],x>2時(shí),f(x)∈(,).由,則f(x)有4個(gè)實(shí)根,由題意,只要f(x)=a有2個(gè)實(shí)根,則由圖象可得當(dāng)0<a≤時(shí),f(x)=a有2個(gè)實(shí)根,當(dāng)a時(shí),f(x)=a有2個(gè)實(shí)根.綜上可得:0<a≤或a.故答案為0<a≤或a..【點(diǎn)睛】本題考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用,考查方程和函數(shù)的轉(zhuǎn)化思想,運(yùn)用數(shù)形結(jié)合的思想方法是解決的常用方法.12、5,【解析】
為等邊三角形,所以算出,,再在中根據(jù)余弦定理易得CD的長.【詳解】因?yàn)闉榈冗吶切?,所以.在中根?jù)余弦定理解得.【點(diǎn)睛】此題考查余弦定理的實(shí)際應(yīng)用,關(guān)鍵點(diǎn)通過已知條件轉(zhuǎn)換為數(shù)學(xué)模型再通過余弦定理求解即可,屬于較易題目.13、【解析】
根據(jù)題意,化簡得,利用式相加,得到,進(jìn)而得到,即可求解結(jié)果.【詳解】因?yàn)?,所以,所以,將以上各式相加,得,又,所以,解得?【點(diǎn)睛】本題主要考查了數(shù)列的遞推關(guān)系式應(yīng)用,其中解答中利用數(shù)列的遞推關(guān)系式,得到關(guān)于數(shù)列首項(xiàng)的方程求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.14、【解析】
根據(jù)角度和弧度的互化公式求解即可.【詳解】.故答案為:.【點(diǎn)睛】本題考查角度和弧度的互化公式,屬于基礎(chǔ)題.15、3【解析】
分式上下為的二次多項(xiàng)式,故上下同除以進(jìn)行分析.【詳解】由題,,又,故.
故答案為:3.【點(diǎn)睛】本題考查了分式型多項(xiàng)式的極限問題,注意:當(dāng)時(shí),16、【解析】
先求得的值,再利用兩角和差的三角公式和正弦函數(shù)的最大值,求得的最大值.【詳解】中,若的面積為,,.,當(dāng)且僅當(dāng)時(shí),取等號,故的最大值為,故答案為:.【點(diǎn)睛】本題主要兩角和差的三角公式的應(yīng)用和正弦函數(shù)的最大值,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)4(2)【解析】
(1)求得圓的半徑,設(shè)出圓的標(biāo)準(zhǔn)方程,由此求得兩點(diǎn)坐標(biāo),進(jìn)而求得三角形的面積.(2)根據(jù),判斷出,由直線的斜率求得直線的斜率,以此列方程求得,根據(jù)直線和圓相交,圓心到直線的距離小于半徑,確定,同時(shí)得到圓心到直線的距離.【詳解】(1)根據(jù)題意,以點(diǎn)(a∈R,且a≠0)為圓心的圓過坐標(biāo)原點(diǎn)O,設(shè)圓C的半徑為r,則r2=a2,圓C的方程為(x﹣a)2+(y)2=a2,令x=0可得:y=0或,則B(0,),令y=0可得:x=0或2a,則A(2a,0),△OAB的面積S|2a|×||=4;(2)根據(jù)題意,直線l:y=﹣2x+4與圓C交于點(diǎn)P、Q,則|CP|=|CQ|,又由|OP|=|OQ|,則直線OC與PQ垂直,又由直線l即PQ的方程為y=﹣2x+4,則KOC,解可得a=±2,當(dāng)a=2時(shí),圓心C的坐標(biāo)為(2,1),圓心到直線l的距離d,r,r>d,此時(shí)直線l與圓相交,符合題意;當(dāng)a=2時(shí),圓心C的坐標(biāo)為(﹣2,﹣1),圓心到直線l的距離d,r,r<d,此時(shí)直線l與圓相離,不符合題意;故圓心C到直線l的距離d.【點(diǎn)睛】本小題主要考查圓的標(biāo)準(zhǔn)方程,考查直線和圓的位置關(guān)系,考查兩條直線的位置關(guān)系,考查運(yùn)算求解能力,屬于中檔題.18、(1);(2).【解析】
(1)數(shù)列是公比為的等比數(shù)列,由等比數(shù)列的通項(xiàng)公式解方程可得首項(xiàng)和公比,即可得到所求通項(xiàng);(2)數(shù)列是公差為的等差數(shù)列,由等差數(shù)列的通項(xiàng)公式解方程可得首項(xiàng)和公差,可得數(shù)列的通項(xiàng),進(jìn)而得到,再由指數(shù)的運(yùn)算性質(zhì)和等差數(shù)列的求和公式,計(jì)算即可得到所求值.【詳解】解:(1)數(shù)列是公比為的等比數(shù)列,,,可得,,解得,,可得,;(2)數(shù)列是公差為的等差數(shù)列,,,可得,,解得,,則,,,即可得,可得,解得或(舍去).【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查方程思想和運(yùn)算能力,屬于中檔題.19、(1);(2);(3)【解析】
(1)設(shè)等差數(shù)列的公差為,利用等差數(shù)列的通項(xiàng)公式和求和公式,解方程可得首項(xiàng)和公差,進(jìn)而得到通項(xiàng)公式;(2)由(1)得,利用等差數(shù)列的求和公式可得;(3)分別求得和,作差比較即可得到大小關(guān)系.【詳解】(1)設(shè)等差數(shù)列的公差為,由,得,化簡得①.由,得,得②.由①②解得:,,則.則數(shù)列的通項(xiàng)公式為.(2)由(1)得,①當(dāng)時(shí),,;②當(dāng)且時(shí),,兩式作差得:有:有:有:得由上知.(3)由(1)得由,由(2)得當(dāng)時(shí),,令.則.由,有,得,故單調(diào)遞增.又由,故,可得.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,也考查了錯(cuò)位相減法求數(shù)列的和,分類討論思想和作差比較大小的問題,屬于中檔題.20、(1)∠A=(2)AC邊上的高為【解析】分析:(1)先根據(jù)平方關(guān)系求,再根據(jù)正弦定理求,即得;(2)根據(jù)三角形面積公式兩種表示形式列方程,再利用誘導(dǎo)公式以及兩角和正弦公式求,解得邊上的高.詳解:解:(1)在△ABC中,∵cosB=–,∴B∈(,π),∴sinB=.由正弦定理得=,∴sinA=.∵B∈(,π),∴A∈(0,),∴∠A=.(2)在△ABC中,∵sinC=sin(A+B)=sinAcosB+sinBcosA==.如圖所示,在△ABC中,∵sinC=,∴h==,∴AC邊上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 倉儲物流設(shè)施招標(biāo)文件內(nèi)容
- 人力資源招標(biāo)操作流程
- 攝影棚攝影技術(shù)提升
- 農(nóng)村養(yǎng)老設(shè)施村委會施工合同
- 水壩建設(shè)爆破工程合同
- 實(shí)驗(yàn)室藥品室紫外線消毒規(guī)程
- 軟件開發(fā)項(xiàng)目施工合同范本
- 生態(tài)養(yǎng)殖合伙協(xié)議
- 工程項(xiàng)目付款方式補(bǔ)充協(xié)議
- 花園租賃合同樣本
- 集裝箱購銷協(xié)議合同范本示例
- 求職面試技巧培訓(xùn)
- 室內(nèi)裝修施工安全方案
- 工程詢價(jià)合同模板
- 事業(yè)單位招聘《綜合基礎(chǔ)知識》考試試題及答案
- 無錫風(fēng)機(jī)吊裝施工方案
- 《突發(fā)事件應(yīng)急預(yù)案管理辦法》知識培訓(xùn)
- 江蘇省南京市建鄴區(qū)2024-2025學(xué)年九年級上學(xué)期期中考試物理試題(無答案)
- 中小學(xué)師德師風(fēng)建設(shè)各項(xiàng)制度匯編
- 第九章 職業(yè)健康安全與環(huán)境管理課件
- 2024年保安員證考試題庫及答案(共260題)
評論
0/150
提交評論