版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省尤溪一中2025屆高一下數(shù)學(xué)期末聯(lián)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若點(diǎn)(m,n)在反比例函數(shù)y=的圖象上,其中m<0,則m+3n的最大值等于()A.2 B.2 C.﹣2 D.﹣22.已知等差數(shù)列{an}的前n項(xiàng)和為,滿足S5=S9,且a1>0,則Sn中最大的是()A. B. C. D.3.在中,分別為角的對(duì)邊,若,且,則邊=()A. B. C. D.4.某數(shù)學(xué)競(jìng)賽小組有3名男同學(xué)和2名女同學(xué),現(xiàn)從這5名同學(xué)中隨機(jī)選出2人參加數(shù)學(xué)競(jìng)賽(每人被選到的可能性相同).則選出的2人中恰有1名男同學(xué)和1名女同學(xué)的概率為()A. B. C. D.5.設(shè),滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.3 B. C.1 D.6.在△ABC中,,則A等于()A.30° B.60° C.120° D.150°7.一個(gè)平面截一球得到直徑為6的圓面,球心到這個(gè)圓面的距離為4,則這個(gè)球的體積為()A. B. C. D.8.已知且為常數(shù),圓,過圓內(nèi)一點(diǎn)的直線與圓相交于兩點(diǎn),當(dāng)弦最短時(shí),直線的方程為,則的值為()A.2 B.3 C.4 D.59.已知:平面內(nèi)不再同一條直線上的四點(diǎn)、、、滿足,若,則()A.1 B.2 C. D.10.在中,,,是邊的中點(diǎn).為所在平面內(nèi)一點(diǎn)且滿足,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知正實(shí)數(shù)x,y滿足2x+y=2,則xy的最大值為______.12.已知數(shù)列中,,,設(shè),若對(duì)任意的正整數(shù),當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍是______.13.某四棱錐的三視圖如圖所示,如果網(wǎng)格紙上小正方形的邊長為1,那么該四棱錐最長棱的棱長為.14.每年五月最受七中學(xué)子期待的學(xué)生活動(dòng)莫過于學(xué)生節(jié),在每屆學(xué)生節(jié)活動(dòng)中,著七中校服的布偶“七中熊”尤其受同學(xué)和老師歡迎.已知學(xué)生會(huì)將在學(xué)生節(jié)當(dāng)天售賣“七中熊”,并且會(huì)將所獲得利潤全部捐獻(xiàn)于公益組織.為了讓更多同學(xué)知曉,學(xué)生會(huì)宣傳部需要前期在學(xué)校張貼海報(bào)宣傳,成本為250元,并且當(dāng)學(xué)生會(huì)向廠家訂制只“七中熊”時(shí),需另投入成本,(元),.通過市場(chǎng)分析,學(xué)生會(huì)訂制的“七中熊”能全部售完.若學(xué)生節(jié)當(dāng)天,每只“七中熊”售價(jià)為70元,則當(dāng)銷量為______只時(shí),學(xué)生會(huì)向公益組織所捐獻(xiàn)的金額會(huì)最大.15.已知數(shù)列滿足,若對(duì)任意都有,則實(shí)數(shù)的取值范圍是_________.16.已知圓錐的底面半徑為3,體積是,則圓錐側(cè)面積等于___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)解關(guān)于的不等式;(2)若,令,求函數(shù)的最小值.18.如圖,在三棱柱中,側(cè)棱垂直于底面,,分別是的中點(diǎn).(1)求證:平面;(2)求三棱錐的體積.19.已知.(1)求函數(shù)的最小正周期和對(duì)稱軸方程;(2)若,求的值域.20.某城市理論預(yù)測(cè)2020年到2025屆人口總數(shù)與年份的關(guān)系如下表所示:年份202x(年)01234人口數(shù)y(十萬)5781119(1)請(qǐng)?jiān)谟颐娴淖鴺?biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;(3)據(jù)此估計(jì)2025年該城市人口總數(shù).(參考公式:,)21.已知數(shù)列的前n項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)若等差數(shù)列滿足,且,,成等比數(shù)列,求c.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
根據(jù)題意可得出,再根據(jù)可得,將添上兩個(gè)負(fù)號(hào)運(yùn)用基本不等式,即可求解.【詳解】由題意,可得,因?yàn)?,所以,所以,?dāng)且僅當(dāng),即時(shí),等號(hào)成立,故選:C.【點(diǎn)睛】本題主要考查了基本不等式的應(yīng)用,其中解答中熟記基本不等式的使用條件,合理運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、B【解析】
由S5=S9可得a7+a8=0,再結(jié)合首項(xiàng)即可判斷Sn最大值【詳解】依題意,由S5=S9,a1>0,所以數(shù)列{an}為遞減數(shù)列,且S9-S5=a6+a7+a8+a9=2(a7+a8)=0,即a7+a8=0,所以a7>0,a8<0,所以則Sn中最大的是S7,故選:B.【點(diǎn)睛】本題考查等差數(shù)列Sn最值的判斷,屬于基礎(chǔ)題3、B【解析】
由利用正弦定理化簡(jiǎn),再利用余弦定理表示出cosA,整理化簡(jiǎn)得a2b2+c2,與,聯(lián)立即可求出b的值.【詳解】由sinB=8cosAsinC,利用正弦定理化簡(jiǎn)得:b=8c?cosA,將cosA代入得:b=8c?,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),則b=1.故選B【點(diǎn)睛】此題考查了正弦、余弦定理,熟練掌握定理,準(zhǔn)確計(jì)算是解本題的關(guān)鍵,是中檔題4、A【解析】
把5名學(xué)生編號(hào),然后寫出任取2人的所有可能,按要求計(jì)數(shù)后可得概率.【詳解】3名男生編號(hào)為,兩名女生編號(hào)為,任選2人的所有情形為:,,共10種,其中恰有1名男生1名女生的有共6種,所以所求概率為.【點(diǎn)睛】本題考查古典概型,方法是列舉法.5、C【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,結(jié)合圖形找出最優(yōu)解,從而求出目標(biāo)函數(shù)的最大值.【詳解】作出不等式組對(duì)應(yīng)的平面區(qū)域,如陰影部分所示;平移直線,由圖像可知當(dāng)直線經(jīng)過點(diǎn)時(shí),最大.,解得,即,所以的最大值為1.故答案為選C【點(diǎn)睛】本題給出二元一次不等式組,求目標(biāo)函數(shù)的最大值,著重考查二元一次不等式組表示的平面區(qū)域和簡(jiǎn)單的線性規(guī)劃,也考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.6、C【解析】
試題分析:考點(diǎn):余弦定理解三角形7、C【解析】
過球心作垂直圓面于.連接與圓面上一點(diǎn)構(gòu)造出直角三角形再計(jì)算球的半徑即可.【詳解】如圖,過球心作垂直圓面于,連接與圓面上一點(diǎn).則.故球的體積為.故選:C【點(diǎn)睛】本題主要考查了球中構(gòu)造直角三角形求解半徑的方法等.屬于基礎(chǔ)題.8、B【解析】
由圓的方程求出圓心坐標(biāo)與半徑,結(jié)合題意,可得過圓心與點(diǎn)(1,2)的直線與直線2x﹣y=0垂直,再由斜率的關(guān)系列式求解.【詳解】圓C:化簡(jiǎn)為圓心坐標(biāo)為,半徑為.如圖,由題意可得,當(dāng)弦最短時(shí),過圓心與點(diǎn)(1,2)的直線與直線垂直.則,即a=1.故選:B.【點(diǎn)睛】本題考查直線與圓位置關(guān)系的應(yīng)用,考查數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.一般直線和圓的題很多情況下是利用數(shù)形結(jié)合來解決的,聯(lián)立的時(shí)候較少;在求圓上的點(diǎn)到直線或者定點(diǎn)的距離時(shí),一般是轉(zhuǎn)化為圓心到直線或者圓心到定點(diǎn)的距離,再加減半徑,分別得到最大值和最小值;涉及到圓的弦長或者切線長時(shí),經(jīng)常用到垂徑定理.9、D【解析】
根據(jù)向量的加法原理對(duì)已知表示式轉(zhuǎn)化為所需向量的運(yùn)算對(duì)照向量的系數(shù)求解.【詳解】根據(jù)向量的加法原理得所以,,解得且故選D.【點(diǎn)睛】本題考查向量的線性運(yùn)算,屬于基礎(chǔ)題.10、D【解析】
根據(jù)平面向量基本定理可知,將所求數(shù)量積化為;由模長的等量關(guān)系可知和為等腰三角形,根據(jù)三線合一的特點(diǎn)可將和化為和,代入可求得結(jié)果.【詳解】為中點(diǎn)和為等腰三角形,同理可得:本題正確選項(xiàng):【點(diǎn)睛】本題考查向量數(shù)量積的求解問題,關(guān)鍵是能夠利用模長的等量關(guān)系得到等腰三角形,從而將含夾角的運(yùn)算轉(zhuǎn)化為已知模長的向量的運(yùn)算.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由基本不等式可得,可求出xy的最大值.【詳解】因?yàn)椋?,故,?dāng)且僅當(dāng)時(shí),取等號(hào).故答案為.【點(diǎn)睛】利用基本不等式求最值必須具備三個(gè)條件:①各項(xiàng)都是正數(shù);②和(或積)為定值;③等號(hào)取得的條件.12、【解析】∵,(,),當(dāng)時(shí),,,…,,并項(xiàng)相加,得:,
∴,又∵當(dāng)時(shí),也滿足上式,
∴數(shù)列的通項(xiàng)公式為,∴
,令(),則,∵當(dāng)時(shí),恒成立,∴在上是增函數(shù),
故當(dāng)時(shí),,即當(dāng)時(shí),,對(duì)任意的正整數(shù),當(dāng)時(shí),不等式恒成立,則須使,即對(duì)恒成立,即的最小值,可得,∴實(shí)數(shù)的取值范圍為,故答案為.點(diǎn)睛:本題考查數(shù)列的通項(xiàng)及前項(xiàng)和,涉及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查運(yùn)算求解能力,注意解題方法的積累,屬于難題通過并項(xiàng)相加可知當(dāng)時(shí),進(jìn)而可得數(shù)列的通項(xiàng)公式,裂項(xiàng)、并項(xiàng)相加可知,通過求導(dǎo)可知是增函數(shù),進(jìn)而問題轉(zhuǎn)化為,由恒成立思想,即可得結(jié)論.13、【解析】
先通過拔高法還原三視圖為一個(gè)四棱錐,再根據(jù)圖像找到最長棱計(jì)算即可?!驹斀狻扛鶕?jù)拔高法還原三視圖,可得斜棱長最長,所以斜棱長為?!军c(diǎn)睛】此題考查簡(jiǎn)單三視圖還原,關(guān)鍵點(diǎn)通過拔高法將三視圖還原易求解,屬于較易題目。14、200【解析】
由題意求得學(xué)生會(huì)向公益組織所捐獻(xiàn)的金額的函數(shù)解析式,再由對(duì)勾函數(shù)的性質(zhì)求得取最大值時(shí)的值即可.【詳解】由題意,設(shè)學(xué)生會(huì)向公益組織所捐獻(xiàn)的金額為,,由對(duì)勾函數(shù)的性質(zhì)知,在時(shí)取得最小值,所以時(shí),取得最大值.故答案為:200【點(diǎn)睛】本題主要考查利用函數(shù)解決實(shí)際問題和對(duì)勾函數(shù)的性質(zhì),屬于基礎(chǔ)題.15、【解析】
由題若對(duì)于任意的都有,可得解出即可得出.【詳解】∵,若對(duì)任意都有,
∴.
∴,
解得.
故答案為.【點(diǎn)睛】本題考查了數(shù)列與函數(shù)的單調(diào)性、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.16、【解析】試題分析:求圓錐側(cè)面積必須先求圓錐母線,既然已知體積,那么可先求出圓錐的高,再利用圓錐的性質(zhì)(圓錐的高,底面半徑,母線組成直角三角形)可得母線,,,,.考點(diǎn):圓錐的體積與面積公式,圓錐的性質(zhì).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)【解析】
(1)討論的范圍,分情況得的三個(gè)答案.(2)時(shí),寫出表達(dá)式,利用均值不等式得到最小值.【詳解】(1)①當(dāng)時(shí),不等式的解集為,②當(dāng)時(shí),不等式的解集為,③當(dāng)時(shí),不等式的解集為(2)若時(shí),令(當(dāng)且僅當(dāng),即時(shí)取等號(hào)).故函數(shù)的最小值為.【點(diǎn)睛】本題考查了解不等式,均值不等式,函數(shù)的最小值,意在考查學(xué)生的綜合應(yīng)用能力.18、(1)證明見解析(2)【解析】試題分析:(1)做輔助線,先證及四邊形為平行四邊形平面;(2)利用勾股定理求得.試題解析:(1)證明:取中點(diǎn),連接,則∵是的中點(diǎn),∴;∵是的中點(diǎn),∴,∴四邊形為平行四邊形,∴,∵平面,平面,∴平面;(2)∵,∴,∴19、(1)對(duì)稱軸為,最小正周期;(2)【解析】
(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進(jìn)行化簡(jiǎn)得到,由周期公式和對(duì)稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.【詳解】(1)令,則的對(duì)稱軸為,最小正周期;(2)當(dāng)時(shí),,因?yàn)樵趩握{(diào)遞增,在單調(diào)遞減,在取最大值,在取最小值,所以,所以.【點(diǎn)睛】本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對(duì)稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應(yīng)用,屬于基礎(chǔ)題.20、(1)見解析;(2);(3)2025年該城市人口總數(shù)為196萬人【解析】
(1)由表中數(shù)據(jù)描點(diǎn)即可;(2)由最小二乘法的公式得出的值,即可得出該線性方程;(3)將代入(2)中的線性方程,即可得出2025年該城市人口總數(shù).【詳解】(1)畫出散點(diǎn)圖如圖所示.(2),,,,,,則線性回歸方程.(3)時(shí),(十萬)(萬).答:估計(jì)2025年該城市人口總數(shù)為196萬人【點(diǎn)睛】本題主要考查了繪制散點(diǎn)圖,求回歸直線方程以及根據(jù)回歸方程進(jìn)行數(shù)據(jù)估計(jì),屬于中檔題.21、(1);(2).【解析】
(1)根據(jù)題意,數(shù)列為1為首項(xiàng),4為公差的等差數(shù)列,根據(jù)等差數(shù)列通項(xiàng)公式計(jì)算即可;(2)由(1)可求數(shù)列的前n項(xiàng)和為,根據(jù),,成等差數(shù)列及,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)強(qiáng)制旋轉(zhuǎn)流體多相渦運(yùn)動(dòng)理論模型研究
- 基于深度學(xué)習(xí)的文本到SQL生成算法研究
- 2025年度企業(yè)研發(fā)貸款用途合同
- 侗族文化元素在農(nóng)產(chǎn)品包裝中的應(yīng)用設(shè)計(jì)
- 2025年度貸款中介業(yè)務(wù)信用評(píng)級(jí)合作協(xié)議
- 2025年度銷售版保險(xiǎn)代理服務(wù)協(xié)議
- 二零二五年度股東分紅協(xié)議書(文化娛樂產(chǎn)業(yè)投資)
- 2025年度藝術(shù)工作室合伙人合作協(xié)議書
- 社區(qū)防災(zāi)空間布置方案
- 2025年度消防演練場(chǎng)地維修與消防器材更新合同
- 2024年高純氮化鋁粉體項(xiàng)目可行性分析報(bào)告
- 安檢人員培訓(xùn)
- 山東省濰坊市2024-2025學(xué)年高三上學(xué)期1月期末 英語試題
- 危險(xiǎn)性較大分部分項(xiàng)工程及施工現(xiàn)場(chǎng)易發(fā)生重大事故的部位、環(huán)節(jié)的預(yù)防監(jiān)控措施
- 《榜樣9》觀后感心得體會(huì)四
- 2023事業(yè)單位筆試《公共基礎(chǔ)知識(shí)》備考題庫(含答案)
- 化學(xué)-廣東省廣州市2024-2025學(xué)年高一上學(xué)期期末檢測(cè)卷(一)試題和答案
- 2025四川中煙招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- EHS工程師招聘筆試題與參考答案(某大型央企)2024年
- 營銷策劃 -麗亭酒店品牌年度傳播規(guī)劃方案
- 2025年中國蛋糕行業(yè)市場(chǎng)規(guī)模及發(fā)展前景研究報(bào)告(智研咨詢發(fā)布)
評(píng)論
0/150
提交評(píng)論